Tissue engineered vascular grafts (TEVGs) have the potential to overcome the issues faced by existing small diameter prosthetic grafts by providing a biodegradable scaffold where the patient’s own cells can engraft and form functional neotissue. However, applying classical approaches to create arterial TEVGs using slow degrading materials with supraphysiological mechanical properties, typically results in limited host cell infiltration, poor remodeling, stenosis, and calcification. The purpose of this study is to evaluate the feasibility of novel small diameter arterial TEVGs created using fast degrading material. A 1.0mm and 5.0mm diameter TEVGs were fabricated with electrospun polycaprolactone (PCL) and chitosan (CS) blend nanofibers. The 1.0mm TEVGs were implanted in mice (n = 3) as an unseeded infrarenal abdominal aorta interposition conduit., The 5.0mm TEVGs were implanted in sheep (n = 6) as an unseeded carotid artery (CA) interposition conduit. Mice were followed with ultrasound and sacrificed at 6 months. All 1.0mm TEVGs remained patent without evidence of thrombosis or aneurysm formation. Based on small animal outcomes, sheep were followed with ultrasound and sacrificed at 6 months for histological and mechanical analysis. There was no aneurysm formation or calcification in the TEVGs. 4 out of 6 grafts (67%) were patent. After 6 months in vivo, 9.1 ± 5.4% remained of the original scaffold. Histological analysis of patent grafts demonstrated deposition of extracellular matrix constituents including elastin and collagen production, as well as endothelialization and organized contractile smooth muscle cells, similar to that of native CA. The mechanical properties of TEVGs were comparable to native CA. There was a significant positive correlation between TEVG wall thickness and CD68+ macrophage infiltration into the scaffold (R2 = 0.95, p = 0.001). The fast degradation of CS in our novel TEVG promoted excellent cellular infiltration and neotissue formation without calcification or aneurysm. Modulating host macrophage infiltration into the scaffold is a key to reducing excessive neotissue formation and stenosis.
Objective Recent efforts to tissue engineer long-segment tracheal grafts have been complicated by stenosis and malacia. It has been proposed that both the mechanical characteristics and cell seeding capacity of TETG scaffolds are integral to graft performance. Our aim was to design a tracheal construct that approximates the biomechanical properties of native sheep trachea and optimizes seeding with bone marrow derived mononuclear cells prior to preclinical evaluation in an ovine model. Methods A solution of 8% polyethylene terephthalate (PET) and 3% polyurethane (PU) was prepared at a ratio of either 8:2 or 2:8 and electrospun onto a custom stainless steel mandrel designed to match the dimensional measurements of the juvenile sheep trachea. 3D-printed porous or solid polycarbonate C-shaped rings were embedded within the scaffolds during electrospinning. The scaffolds underwent compression testing in the anterior-posterior and lateral-medial axes and the biomechanical profiles compared to that of a juvenile ovine trachea. The most biomimetic constructs then underwent vacuum seeding with ovine bone marrow derived mononuclear cells. Fluorometric DNA assay was used to quantify scaffold seeding. Results Both porous and solid rings approximated the biomechanics of the native ovine trachea, but the porous rings were most biomimetic. The load-displacement curve of scaffolds fabricated from a ratio of 2:8 PET:PU most closely mimicked that of native trachea in the anterior-posterior and medial-lateral axes. Solid C-ringed scaffolds had a greater cell seeding efficiency when compared to porous ringed scaffolds (Solid: 19 × 104 vs. Porous: 9.6 × 104 cells/mm3, p = 0.0098). Conclusion A long segment tracheal graft composed of 2:8 PET:PU with solid C-rings approximates the biomechanics of the native ovine trachea and demonstrates superior cell seeding capacity of the two prototypes tested. Further preclinical studies using this graft design in vivo would inform the rational design of an optimal TETG scaffold.
Tracheal stenosis can become a fatal condition, and current treatments include augmentation of the airway with autologous tissue. A tissue-engineered approach would not require a donor source, while providing an implant that meets both surgeons' and patients' needs. A fibrous, polymeric scaffold organized in gradient bilayers of polycaprolactone (PCL) and poly-lactic-co-glycolic acid (PLGA) with 3D printed structural ring supports, inspired by the native trachea rings, could meet this need. The purpose of the current study was to characterize the tracheal scaffolds with mechanical testing models to determine the design most suitable for maintaining a patent airway. Degradation over 12 weeks revealed that scaffolds with the 3D printed rings had superior properties in tensile and radial compression, with at least a three fold improvement and 8.5-fold improvement, respectively, relative to the other scaffold groups. The ringed scaffolds produced tensile moduli, radial compressive forces, and burst pressures similar to or exceeding physiological forces and native tissue data. Scaffolds with a thicker PCL component had better suture retention and tube flattening recovery properties, with the monolayer of PCL (PCL-only group) exhibiting a 2.3-fold increase in suture retention strength (SRS). Tracheal scaffolds with ring reinforcements have improved mechanical properties, while the fibrous component increased porosity and cell infiltration potential. These scaffolds may be used to treat various trachea defects (patch or circumferential) and have the potential to be employed in other tissue engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.