In the present study, we examined the role of ascorbic acid (AsA, vitamin C) and/or 24-epibrassinolide (EBL, an active BR) in mitigation of salt-induced stress in potato (Solanum tuberousum L). The 10-d-old plants were exposed to 150 mM NaCl and they were subsequently treated by ASA and/or EBL. The salt stress reduced significantly the plant growth, tuber yield, total chlorophyll and increased proline content and electrolyte leakage in the leaves. Toxic effects induced by salt stress were completely overcome by the combined exogenous application of AsA and EBL. The AsA and/or EBL treatments improved the growth parameters of the salt treated plants, such as shoot length, tuber number and size, fresh and dry mass and other physiological parameters. Our data also indicated that applications of AsA and EBL up-regulated the stress regulating plant hormone such as IAA, IBA and activities of the antioxidant enzymes, such as catalase (CAT), peroxidase (POX), superoxide dismutase (SOD), ascorbate peroxidase (APX) and under salt stress. Int J Appl Sci Biotechnol, Vol 3(4): 655-667
Genetic engineering is recognized as a powerful tool for altering the genetic characteristic of crop plants. Genetic engineering has tremendous potential in developing improved potato varieties with desired agronomic traits and has been utilized for improvement of several crop plants including potato to enhance essential amino acid, protein and lipids/carbohydrates contents as well to improve stress tolerance. The pathway engineering of amino acid revealed dramatic changes in essential amino acid content and protein quality. Similarly, the vitamin pathway engineering of potato has been proved to enhance the vitamin content with increased cellular antioxidant activities. Secondary metabolites such as flavonoids have also been altered through the genetic engineering of potato. This review provides detailed reports on the advances made in genetic transformation of potato for enrichment in its nutritional and therapeutic value by an increase in functional secondary metabolites, carbohydrate, essential amino acids, proteins, lipids, vitamins and edible vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.