Blood biomarkers have been explored for their potential to provide objective measures in the assessment of traumatic brain injury (TBI). However, it is not clear which biomarkers are best for diagnosis and prognosis in different severities of TBI. Here, we compare existing studies on the discriminative abilities of serum biomarkers for four commonly studied clinical situations: detecting concussion, predicting intracranial damage after mild TBI (mTBI), predicting delayed recovery after mTBI, and predicting adverse outcome after severe TBI (sTBI). We conducted a literature search of publications on biomarkers in TBI published up until July 2018. Operating characteristics were pooled for each biomarker for comparison. For detecting concussion, 4 biomarker panels and creatine kinase B type had excellent discriminative ability. For detecting intracranial injury and the need for a head CT scan after mTBI, 2 biomarker panels, and hyperphosphorylated tau had excellent operating characteristics. For predicting delayed recovery after mTBI, top candidates included calpain-derived αII-spectrin N-terminal fragment, tau A, neurofilament light, and ghrelin. For predicting adverse outcome following sTBI, no biomarker had excellent performance, but several had good performance, including markers of coagulation and inflammation, structural proteins in the brain, and proteins involved in homeostasis. The highest-performing biomarkers in each of these categories may provide insight into the pathophysiologies underlying mild and severe TBI. With further study, these biomarkers have the potential to be used alongside clinical and radiological data to improve TBI diagnostics, prognostics, and evidence-based medical management.
There is growing evidence that stress-induced brain cytokines are important in the etiology of depression and anxiety. Here, we review how the neuroendocrine responses to psychological stressors affect the immediate and long-term regulation of inflammatory cytokines within the brain and highlight how the regulation changes across time with repeated stress exposure. In doing so, we report on the percentage of studies in the literature that observed increases in either IL-1 β , TNF- α , or IL-6 within the hypothalamus, hippocampus, or prefrontal cortex after either acute or chronic stress exposure. The key takeaway is that catecholamines and glucocorticoids play critical roles in the regulation of brain cytokines after psychological stress exposure. Central catecholamines stimulate the release of IL-1 β from microglia, which is a key factor in the further activation of microglia and recruitment of monocytes into the brain. Meanwhile, the acute elevation of glucocorticoids inhibits the production of brain cytokines via two mechanisms: the suppression of noradrenergic locus coeruleus neurons and inhibition of the NF κ B signaling pathway. However, glucocorticoids and peripheral catecholamines facilitate inflammatory responses to future stimuli by stimulating monocytes to leave the bone marrow, downregulating inhibitory receptors on microglia, and priming inflammatory responses mediated by peripheral monocytes or macrophages. The activation of microglia and the elevation of peripheral glucocorticoid and catecholamine levels are both necessary during times of stress exposure for the development of psychopathologies.
Tuberculosis (TB) remains a pervasive global health threat. A significant proportion of the world’s population that is affected by latent tuberculosis infection (LTBI) is at risk for reactivation and subsequent transmission to close contacts. Despite sustained efforts in eradication, the rise of multidrug-resistant strains of Mycobacteriumtuberculosis (M. tb) has rendered traditional antibiotic therapy less effective at mitigating the morbidity and mortality of the disease. Management of TB is further complicated by medications with various off-target effects and poor compliance. Immunocompromised patients are the most at-risk in reactivation of a LTBI, due to impairment in effector immune responses. Our laboratory has previously reported that individuals suffering from Type 2 Diabetes Mellitus (T2DM) and HIV exhibited compromised levels of the antioxidant glutathione (GSH). Restoring the levels of GSH resulted in improved control of M. tb infection. The goal of this review is to provide insights on the diverse roles of TGF- β and vitamin D in altering the levels of GSH, granuloma formation, and clearance of M. tb infection. We propose that these pathways represent a potential avenue for future investigation and development of new TB treatment modalities.
Chronic obstructive pulmonary disease (COPD) is defined as a progressive lung disease characterized by non-reversible air-flow limitation. It continues to be a leading cause of morbidity and mortality in the United States. 1,2 The burden of COPD is greater in rural areas with significant healthcare disparities in regions such as Appalachia. West Virginia has the highest COPD prevalence in the United States as well as one of the highest death rates from the disease. 3
Recent interest has focused on the benefits of time-restricted feeding strategies, including intermittent fasting, for weight loss. It is not yet known whether intermittent fasting is more effective than daily caloric restriction at stimulating weight loss and how each is subject to individual differences. Here, rat models of leanness and obesity, artificially selected for intrinsically high (HCR) and low (LCR) aerobic capacity, were subjected to intermittent fasting and 50% calorie restrictive diets in two separate experiments using male rats. The lean, high-fitness HCR and obesity-prone, low-fitness LCR rats underwent 50% caloric restriction while body weight and composition were monitored. The low-fitness LCR rats were better able to retain lean mass than the highfitness HCR rats, without significantly different proportional loss of weight or fat. In a separate experiment using intermittent fasting in male HCR and LCR rats, alternateday fasting induced significantly greater loss of weight and fat mass in LCR compared with HCR rats, although the HCR rats had a more marked reduction in ad libitum daily food intake. Altogether, this suggests that intermittent fasting is an effective weightloss strategy for those with low intrinsic aerobic fitness; however, direct comparison of caloric restriction and intermittent fasting is warranted to determine any differential effects on energy expenditure in lean and obesity-prone phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.