At impact of a liquid drop on a solid surface an air bubble can be entrapped. Here we show that two competing effects minimize the (relative) size of this entrained air bubble: For large drop impact velocity and large droplets the inertia of the liquid flattens the entrained bubble, whereas for small impact velocity and small droplets capillary forces minimize the entrained bubble. However, we demonstrate experimentally, theoretically, and numerically that in between there is an optimum, leading to maximal air bubble entrapment. Our results have a strong bearing on various applications in printing technology, microelectronics, immersion lithography, diagnostics, or agriculture.The impact of liquid droplets on surfaces is omnipresent in nature and technology, ranging from falling raindrops to applications in agriculture and inkjet printing. The crucial question often is: How well does the liquid wet a surface? The traditional view is that it is the surface tension which gives a quantitative answer. However, it has been shown recently that an air bubble can be entrapped under a liquid drop as it impacts on the surface [1-6]. Also Xu et al. [7,8] revealed the important role of the surrounding air on the impact dynamics, including a possible splash formation. The mechanism works as follows [3][4][5][6]: The air between the falling drop and the surface is strongly squeezed, leading to a pressure buildup in the air under the drop. The enhanced pressure results in a dimple formation in the droplet and eventually to the entrapment of an air bubble (figure 1a). The very simple question we ask and answer in this paper is: For which impact velocity is the entrapped bubble maximal?Our experimental setup is shown in figure 1b and is similar to that of ref.[9] where it is described in detail. An ethanol drop impacts on a smooth glass surface after detaching from a needle, or for velocities smaller than 0.32 m/s, after moving the needle downwards using a linear translation stage. A high-speed side view recording is used to measure the drop diameter and velocity. A synchronized bottom view recording by a high-speed color camera is used to measure the deformed shape of the liquid drop. Colored interference patterns are created by high-intensity coaxial white light, which reflects from both the glass surface and the bottom of the droplet. Using a color-matching approach in combination with known reference surfaces, the complete air thickness profile can be extracted (shown in figure 1c). For experiments done at larger impact velocities (U > 0.76 m/s), we use a pulse of diffused laser light triggered by an optical switch. The thickness of the air film at the rim is assumed to be zero, and the complete air thickness profile can then be obtained from the monochromatic fringe pattern. From these measurements we can determine the dimple height, H d , and the volume of the entrained bubble, V b , at the very moment of impact. This moment is defined by the first wetting of the surface, i.e., the moment when the concentric symmetry of th...
This paper describes the production of thin, focused microjets with velocities of up to 850 m=s by the rapid vaporization of a small mass of liquid in an open liquid-filled capillary. The vaporization is caused by the absorption of a low-energy laser pulse. A likely explanation of the observed phenomenon is based on the impingement of the shock wave caused by the nearly instantaneous vaporization on the free surface of the liquid. We conduct an experimental study of the dependence of the jet velocity on several parameters and develop a semiempirical relation for its prediction. The coherence of the jets and their high velocity, good reproducibility, and controllability are unique features of the system. A possible application is to development of needle-free drug-injection systems that would be of great importance for health care worldwide.
A shallow, vertically shaken granular bed in a quasi 2-D container is studied experimentally yielding a wider variety of phenomena than in any previous study: (1) bouncing bed, (2) undulations, (3) granular Leidenfrost effect, (4) convection rolls, and (5) granular gas. These phenomena and the transitions between them are characterized by dimensionless control parameters and combined in a full experimental phase diagram.
Self-similarity has been the paradigmatic picture for the pinch-off of a drop. Here we will show through high-speed imaging and boundary integral simulations that the inverse problem, the pinch-off of an air bubble in water, is not self-similar in a strict sense: A disk is quickly pulled through a water surface, leading to a giant, cylindrical void which after collapse creates an upward and a downward jet. Only in the limiting case of large Froude numbers does the purely inertial scaling h(-logh)(1/4) proportional tau(1/2) for the neck radius h [J. M. Gordillo et al., Phys. Rev. Lett. 95, 194501 (2005)] become visible. For any finite Froude number the collapse is slower, and a second length scale, the curvature of the void, comes into play. Both length scales are found to exhibit power-law scaling in time, but with different exponents depending on the Froude number, signaling the nonuniversality of the bubble pinch-off.
Very fine sand is prepared in a well-defined and fully decompactified state by letting gas bubble through it. After turning off the gas stream, a steel ball is dropped on the sand. On impact of the ball, sand is blown away in all directions ("splash") and an impact crater forms. When this cavity collapses, a granular jet emerges and is driven straight into the air. A second jet goes downwards into the air bubble entrained during the process, thus pushing surface material deep into the ground. The air bubble rises slowly towards the surface, causing a granular eruption. In addition to the experiments and the discrete particle simulations we present a simple continuum theory to account for the void collapse leading to the formation of the upward and downward jets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.