Activation of the oncogene AEG-1 (MTDH, LYRIC) has been implicated recently in the development of hepatocellular carcinoma (HCC). In mice, HCC can be initiated by exposure to the carcinogen DEN, which has been shown to rely upon activation of NF-κB in liver macrophages. Since AEG-1 is an essential component of NF-κB activation, we interrogated the susceptibility of mice lacking the AEG-1 gene to DEN-induced hepatocarcinogenesis. AEG-1-deficient mice displayed resistance to DEN-induced HCC and lung metastasis. No difference was observed in the response to growth factor signaling or activation of Akt, ERK and β-catenin, compared to wild-type control animals. However, AEG-1-deficient hepatocytes and macrophages exhibited a relative defect in NF-κB activation. Mechanistic investigations showed that IL-6 production and STAT-3 activation, two key mediators of HCC development, were also deficient along with other biological and epigenetics findings in the tumor microenvironment confirming that AEG-1 supports an NF-κB-mediated inflammatory state that drives HCC development. Overall, our findings offer in vivo proofs that AEG-1 is essential for NF-κB activation and hepatocarcinogenesis, and they reveal new roles for AEG-1 in shaping the tumor microenvironment for HCC development.
Retinoid X Receptor (RXR) regulates key cellular responses such as cell growth and development, and this regulation is frequently perturbed in various malignancies, including Hepatocellular Carcinoma (HCC). However, the molecule(s) that physically govern this deregulation are mostly unknown. Here, we identified RXR as an interacting partner of Astrocyte Elevated Gene-1 (AEG-1)/Metadherin (MTDH), an oncogene upregulated in all cancers. Upon interaction, AEG-1 profoundly inhibited RXR/Retinoic Acid Receptor (RAR)-mediated transcriptional activation. Consequently, AEG-1 markedly protected HCC and acute myeloid leukemia (AML) cells from retinoid- and rexinoid-induced cell death. In non-tumorigenic cells and primary hepatocytes, AEG-1/RXR co-localizes in the nucleus where AEG-1 interferes with recruitment of transcriptional co-activators to RXR preventing transcription of target genes. In tumor cells and AEG-1 transgenic hepatocytes, overexpressed AEG-1 entraps RXR in cytoplasm, precluding its nuclear translocation. Additionally, ERK, activated by AEG-1, phosphorylates RXR which leads to its functional inactivation and attenuation of ligand-dependent transactivation. In nude mice models, combination of all-trans retinoic acid (ATRA) and AEG-1 knockdown synergistically inhibited growth of human HCC xenografts. The present study establishes AEG-1 as a novel homeostatic regulator of RXR and RXR/RAR that might contribute to hepatocarcinogenesis. Targeting AEG-1 could sensitize HCC and AML patients to retinoid- and rexinoid-based therapeutics.
SND1, a subunit of the miRNA regulatory complex RISC, has been implicated as an oncogene in hepatocellular carcinoma (HCC). In this study, we show that hepatocyte-specific SND1 transgenic mice (Alb/SND1 mice) develop spontaneous HCC with partial penetrance and exhibit more highly aggressive HCC induced by chemical carcinogenesis. Livers from Alb/SND1 mice exhibited a relative increase in inflammatory markers and spheroid-generating tumor initiating cells (TIC). Mechanistic investigations defined roles for Akt and NF-κB signaling pathways in promoting TIC formation in Alb/SND1 mice. In human xenograft models of subcutaneous or orthotopic HCC, administration of the selective SND1 inhibitor 3′, 5′-deoxythymidine bisphosphate (pdTp) inhibited tumor formation without effects on body weight or liver function. Our work establishes an oncogenic role for SND1 in promoting TIC formation, and highlights pdTp as a highly selective SND1 inhibitor as a candidate therapeutic lead to treat advanced HCC.
The staphylococcal nuclease and tudor domain containing 1 (SND1) is a multifunctional protein overexpressed in breast, prostate, colorectal and hepatocellular carcinomas and malignant glioma. Molecular studies have revealed the multifaceted activities of SND1 involved in regulating gene expression at transcriptional as well as post-transcriptional levels. Early studies identified SND1 as a transcriptional co-activator. SND1 is also a component of RNA-induced silencing complex (RISC) thus mediating RNAi function, a regulator of mRNA splicing, editing and stability, and plays a role in maintenance of cell viability. Such diverse actions allow the SND1 to modulate a complex array of molecular networks, thereby promoting carcinogenesis. Here, we describe the crucial role of SND1 in cancer development and progression, and highlight SND1 as a potential target for therapeutic intervention.
Hesperidin could be useful in protecting cardiomyocytes against age-related increase in oxidative stress mediated by Nrf2 upregulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.