There is a need to understand the water dynamics of alkaline membrane fuel cells under various operating conditions to create electrodes that enable high performance and stable, long-term operation. Here we show, via operando neutron imaging and operando micro X-ray computed tomography, visualizations of the spatial and temporal distribution of liquid water in operating cells. We provide direct evidence for liquid water accumulation at the anode, which causes severe ionomer swelling and performance loss, as well as cell dryout from undesirably low water content in the cathode. We observe that the operating conditions leading to the highest power density during polarization are not generally the conditions that allow for long-term stable operation. This observation leads to new catalyst layer designs and gas diffusion layers. This study reports alkaline membrane fuel cells that can be operated continuously for over 1000 h at 600 mA cm −2 with voltage decay rate of only 32-μV h −1the best-reported durability to date.
We present ultra-low Ir loaded (ULL) proton exchange membrane water electrolyzer (PEMWE) cells that can produce enough hydrogen to largely decarbonize the global natural gas, transportation, and electrical storage sectors by 2050, using only half of the annual global Ir production for PEMWE deployment. This represents a significant improvement in PEMWE's global potential, enabled by careful control of the anode catalyst layer (CL), including its mesostructure and catalyst dispersion. Using commercially relevant membranes (Nafion™ 117), cell materials, electrocatalysts and fabrication techniques, we achieve at peak a 250x improvement in Ir mass activity over commercial PEMWEs. An optimal Ir loading of 0.011 mg Ir cm -2 operated at an Ir-specific power of ~100 MW kg Ir -1 at a cell potential of ~1.66 V vs. RHE (85% higher heating value efficiency). We further evaluate the performance limitations within the ULL regime and offer new insights and guidance in CL design relevant to the broader energy conversion field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.