This work reports the preliminary results of the first human images at the new high-field benchmark of 9.4T. A 65-cmdiameter bore magnet was used together with an asymmetric 40-cm-diameter head gradient and shim set. A multichannel transmission line (transverse electromagnetic (TEM)) head coil was driven by a programmable parallel transceiver to control the relative phase and magnitude of each channel independently. These new RF field control methods facilitated compensation for RF artifacts attributed to destructive interference patterns, in order to achieve homogeneous 9.4T head images or localize anatomic targets. Prior to FDA investigational device exemptions (IDEs) and internal review board (IRB)-approved human studies, preliminary RF safety studies were performed on porcine models. These data are reported together with exit interview results from the first 44 human volunteers. Although several points for improvement are discussed, the preliminary results demonstrate the feasibility of safe and successful human imaging at 9. The impetus for this work originated with the first 9.4T primate images obtained from a large male cynomolgus macaque at the University of Minnesota's Center for Magnetic Resonance Research in 1995 (1). In that early study, the signal-to-noise ratio (SNR) at 9.4T more than doubled the SNR reported at the time for 4T human results (2-5). The RF uniformity and specific absorption rate (SAR) for the monkey study were high and low, respectively. These data also validated the technology and methodology developed to achieve successful 9.4T results in larger laboratory animals. Based on these preliminary results and the need to double the SNR and spectral resolution in laboratory primate studies from the commonly used 4.7T field strength, an initial "seed" grant was awarded in 1997 for what would eventually become the 9.4T system of this report (6). Significant support from the Keck Foundation, the University of Minnesota, and other sources made the present 9.4T system and facility possible.As reported, the macaque head examined in Ref. 1 had only one-seventh the volume of an adult human head. While the SNR and spectral resolution from that study should predict human results, the uniform RF field contours in the monkey head at 9.4T would not predict the B 1 field in the human head of significantly greater electrical dimension. Prior to the present study, predictions of human images at 400 MHz Larmor frequencies were extrapolated upward from 7T data (7), downward from 11.1T images of fixed brains ex vivo (8), or directly from headcoil bench studies (9) and numerical models at 400 MHz, as presented in this article. Data from all four sources predicted severe RF artifacts for images achieved by the conventional means of placing a human head inside a homogeneous, circularly polarized volume coil that is resonant at 400 MHz. These high-frequency RF artifacts were first reported as a "dielectric resonance" (2). Since those first observations were made, high-field-dependent head imaging artifacts hav...
Three different coil configurations were evaluated through simulation and experimentally to determine safe operating limits and evaluate subject size-dependent performance for prostate imaging at 7 T. The coils included a transceiver endorectal coil (trERC), a 16-channel transceiver external surface array (trESA) and a trESA combined with a receive-only ERC (trESA1roERC). Although the transmit B 1 (B þ 1 ) homogeneity was far superior for the trESA, the maximum achievable B þ 1 is subject size dependent and limited by transmit chain losses and amplifier performance. For the trERC, limitations in transmit homogeneity greatly compromised image quality and limited coverage of the prostate. Despite these challenges, the high peak B þ 1 close to the trERC and subject sizeindependent performance provides potential advantages especially for spectroscopic localization where high-bandwidth radiofrequency pulses are required. On the receive side, the combined trESA1roERC provided the highest signal-tonoise ratio and improved homogeneity over the trERC resulting in better visualization of the prostate and surrounding anatomy. In addition, the parallel imaging performance of the trESA1roERC holds strong promise for diffusion-weighted imaging and dynamic contrast-enhanced MRI. Magn Reson Med 64:1625-1639,
A thermal model was needed to predict temperatures in a perfused tissue, which satisfied the following three criteria. One, the model satisfied conservation of energy. Two, the heat transfer rate from blood vessels to tissue was modeled without following a vessel path. Three, the model applied to any unheated and heated tissue. To meet these criteria, a generic bioheat transfer model (BHTM) was derived here by conserving thermal energy in a heated, vascularized, finite tissue and by making a few simplifying assumptions. Two linear, coupled differential equations were obtained with the following two variables: tissue volume averaged temperature and blood volume averaged temperature. The generic model was compared to the widely employed, empirical Pennes' BHTM. The comparison showed that the Pennes' perfusion term wC p (1−ε) should be interpreted as a local vasculature dependent heat transfer coefficient term. Suggestions are presented for further adaptations of the general BHTM for specific tissues using imaging techniques and numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.