Research into Alzheimer’s disease pathology and treatment has often focused on presenilin proteins. These proteins provide the key catalytic activity of the γ-secretase complex in the cleavage of amyloid-β precursor protein and resultant amyloid tangle deposition. Over the last 25 years, screening novel drugs to control this aberrant proteolytic activity has yet to identify effective treatments for the disease. In the search for other mechanisms of presenilin pathology, several studies have demonstrated that mammalian presenilin proteins also act in a non-proteolytic role as a scaffold to co-localize key signaling proteins. This role is likely to represent an ancestral presenilin function, as it has been described in genetically distant species including non-mammalian animals, plants, and a simple eukaryotic amoeba Dictyostelium that diverged from the human lineage over a billion years ago. Here, we review the non-catalytic scaffold role of presenilin, from mammalian models to other biomedical models, and include recent insights using Dictyostelium, to suggest that this role may provide an early evolutionary function of presenilin proteins.
Valproic acid (VPA) provides a common treatment for both epilepsy and bipolar disorder; however, common cellular mechanisms relating to both disorders have yet to be proposed. Here, we explore the possibility of a diacylglycerol kinase (DGK) playing a role in regulating the effect of VPA relating to the treatment of both disorders, using the biomedical model Dictyostelium discoideum. DGK enzymes provide the first step in the phosphoinositide recycling pathway, implicated in seizure activity. They also regulate levels of diacylglycerol (DAG), thereby regulating the protein kinase C (PKC) activity that is linked to bipolar disorder-related signalling. Here, we show that ablation of the single Dictyostelium dgkA gene results in reduced sensitivity to the acute effects of VPA on cell behaviour. Loss of dgkA also provides reduced sensitivity to VPA in extended exposure during development. To differentiate a potential role for this DGKA-dependent mechanism in epilepsy and bipolar disorder treatment, we further show that the dgkA null mutant is resistant to the developmental effects of a range of structurally distinct branched medium-chain fatty acids with seizure control activity and to the bipolar disorder treatment lithium. Finally, we show that VPA, lithium and novel epilepsy treatments function through DAG regulation, and the presence of DGKA is necessary for compound-specific increases in DAG levels following treatment. Thus, these experiments suggest that, in Dictyostelium, loss of DGKA attenuates a common cellular effect of VPA relating to both epilepsy and bipolar disorder treatments, and that a range of new compounds with this effect should be investigated as alternative therapeutic agents.This article has an associated First Person interview with the first author of the paper.
Background and Purpose Epidiolex™, a form of highly purified cannabidiol (CBD) derived from Cannabis plants, has demonstrated seizure control activity in patients with Dravet syndrome, without a fully elucidated mechanism of action. We have employed an unbiased approach to investigate this mechanism at a cellular level. Experimental Approach We use a tractable biomedical model organism, Dictyostelium, to identify a protein controlling the effect of CBD and characterize this mechanism. We then translate these results to a Dravet syndrome mouse model and an acute in vitro seizure model. Key Results CBD activity is partially dependent upon the mitochondrial glycine cleavage system component, GcvH1 in Dictyostelium, orthologous to the human glycine cleavage system component H protein, which is functionally linked to folate one‐carbon metabolism (FOCM). Analysis of FOCM components identified a mechanism for CBD in directly inhibiting methionine synthesis. Analysis of brain tissue from a Dravet syndrome mouse model also showed drastically altered levels of one‐carbon components including methionine, and an in vitro rat seizure model showed an elevated level of methionine that is attenuated following CBD treatment. Conclusions and Implications Our results suggest a novel mechanism for CBD in the regulating methionine levels and identify altered one‐carbon metabolism in Dravet syndrome and seizure activity.
Mutations in the γ-secretase complex are strongly associated with familial Alzheimer disease. Both proteolytic and non-proteolytic functions for the γ-secretase complex have been previously described in mammalian model organisms, but their relative contributions to disease pathology remain unclear. Here, we dissect the roles of orthologs of the γ-secretase components in the model system Dictyostelium, focusing on endocytosis, lysosomal activity and autophagy. In this model, we show that the orthologs of PSEN (psenA and psenB), Ncstn (nicastrin) and Aph-1 (gamma-secretase subunit Aph-1), are necessary for optimal fluid-phase uptake by macropinocytosis and in multicellular development under basic pH conditions. Disruption of either psenA/B or Aph-1 proteins also leads to disrupted phagosomal proteolysis as well as decreased autophagosomal acidification and autophagic flux. This indicates a general defect in lysosomal trafficking and degradation, which we show leads to the accumulation of ubiquitinated protein aggregates in cells lacking psenA/B and Aph-1 proteins. Importantly, we find that all the endocytic defects observed in Dictyostelium PSEN ortholog mutants can be fully rescued by proteolytically inactive Dictyostelium psenB and human PSEN1 proteins. Our data therefore demonstrates an evolutionarily conserved non-proteolytic role for presenilin, and γ-secretase component orthologs, in maintaining Dictyostelium lysosomal trafficking and autophagy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.