The overarching objective of this study was to provide the descriptive epidemiology of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in Qatar by addressing specific research questions through a series of national epidemiologic studies. Sources of data were the centralized and standardized national databases for SARS-CoV-2 infection. By July 10, 2020, 397,577 individuals had been tested for SARS-CoV-2 using polymerase-chain-reaction (PCR), of whom 110,986 were positive, a positivity cumulative rate of 27.9% (95% CI 27.8–28.1%). As of July 5, case severity rate, based on World Health Organization (WHO) severity classification, was 3.4% and case fatality rate was 1.4 per 1,000 persons. Age was by far the strongest predictor of severe, critical, or fatal infection. PCR positivity of nasopharyngeal/oropharyngeal swabs in a national community survey (May 6–7) including 1,307 participants was 14.9% (95% CI 11.5–19.0%); 58.5% of those testing positive were asymptomatic. Across 448 ad-hoc testing campaigns in workplaces and residential areas including 26,715 individuals, pooled mean PCR positivity was 15.6% (95% CI 13.7–17.7%). SARS-CoV-2 antibody prevalence was 24.0% (95% CI 23.3–24.6%) in 32,970 residual clinical blood specimens. Antibody prevalence was only 47.3% (95% CI 46.2–48.5%) in those who had at least one PCR positive result, but 91.3% (95% CI 89.5–92.9%) among those who were PCR positive > 3 weeks before serology testing. Qatar has experienced a large SARS-CoV-2 epidemic that is rapidly declining, apparently due to growing immunity levels in the population.
COVID-19 emerged from China in December 2019 and during 2020 spread to every continent including Antarctica. The coronavirus, SARS-CoV-2, has been identified as the causative pathogen, and its spread has stretched the capacities of healthcare systems and negatively affected the global economy. This review provides an update on the virus, including the genome, the risks associated with the emergence of variants, mode of transmission, immune response, COVID-19 in children and the elderly, and advances made to contain, prevent and manage the disease. Although our knowledge of the mechanics of virus transmission and the immune response has been substantially demystified, concerns over reinfection, susceptibility of the elderly and whether asymptomatic children promote transmission remain unanswered. There are also uncertainties about the pathophysiology of COVID-19 and why there are variations in clinical presentations and why some patients suffer from long lasting symptoms—“the long haulers.” To date, there are no significantly effective curative drugs for COVID-19, especially after failure of hydroxychloroquine trials to produce positive results. The RNA polymerase inhibitor, remdesivir, facilitates recovery of severely infected cases but, unlike the anti-inflammatory drug, dexamethasone, does not reduce mortality. However, vaccine development witnessed substantial progress with several being approved in countries around the globe.
Background: Qatar has a population of 2.8 million, over half of whom are expatriate craft and manual workers (CMW). We aimed to characterize the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in Qatar. Methods: A series of epidemiologic studies were conducted including analysis of the national SARS-CoV-2 PCR testing and hospitalization database, community surveys assessing current infection, ad-hoc PCR testing campaigns in workplaces and residential areas, serological testing for antibody on blood specimens collected for routine clinical screening/management, national Coronavirus Diseases 2019 (COVID-19) death registry, and a mathematical model. Results: By July 10, 397,577 individuals had been PCR tested for SARS-CoV-2, of whom 110,986 were positive, a positivity cumulative rate of 27.9% (95% CI: 27.8-28.1%). PCR positivity of nasopharyngeal swabs in a national community survey (May 6-7) including 1,307 participants was 14.9% (95% CI: 11.5-19.0%); 58.5% of those testing positive were asymptomatic. Across 448 ad-hoc PCR testing campaigns in workplaces and residential areas including 26,715 individuals, pooled mean PCR positivity was 15.6% (95% CI: 13.7-17.7%). SARS-CoV-2 antibody prevalence was 24.0% (95% CI: 23.3-24.6%) in 32,970 residual clinical blood specimens. Antibody prevalence was only 47.3% (95% CI: 46.2-48.5%) in those who had at least one PCR positive result, but it was 91.3% (95% CI: 89.5-92.9%) among those who were PCR positive >3 weeks before serology testing. There were substantial differences in exposure to infection by nationality and sex, reflecting risk differentials between the CMW and urban populations. As of July 5, case severity rate, based on the WHO severity classification, was 3.4% and case fatality rate was 1.4 per 1,000 persons. Model-estimated daily number of infections and active-infection prevalence peaked at 31,040 and 8.0%, respectively, on May 20 and May 21. Attack rate (ever infection) was estimated at 61.3% on July 12. R0 ranged between 1.45-1.68 throughout the epidemic. Rt was estimated at 0.70 on June 15, which was hence set as onset date for easing of restrictions. Age was by far the strongest predictor of severe, critical, or fatal infection. Conclusions: Qatar has experienced a large SARS-CoV-2 epidemic that is rapidly declining, apparently due to exhaustion of susceptibles. The epidemic demonstrated a classic susceptible-infected-recovered SIR dynamics with a rather stable R0 of about 1.6. The young demographic structure of the population, in addition to a resourced public health response, yielded a milder disease burden and lower mortality than elsewhere.
Coronavirus disease 2019 (COVID-19) is caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and first emerged in December 2019 in Wuhan, Hubei province, China. Since then, the virus has rapidly spread to many countries. While the outbreak in China appears to be in decline, the disease has spread across the world, with a daily increase in the number of confirmed cases and infection-related deaths. Here, we highlight (i) the lessons that have been learnt so far and how they will benefit reducing the impact of COVID-19 disease and (ii) an update on the status of drug treatment and vaccine development to prevent COVID-19 and potential future related pandemics. Although the mortality rate is clearly higher than for influenza, the rate does seem to vary from country to country, possibly reflecting differences in how rapidly local health authorities respond to isolate and effectively care for the affected population. Drugs are urgently needed for both prophylaxis and the treatment of severely ill patients; however, no proven effective therapies for SARS-CoV-2 currently exist. A number of drugs that have been approved for other diseases are being tested for the treatment of COVID-19 patients, but there is an absence of data from appropriately designed clinical trials showing that these drugs, either alone or in combination, will prove effective. There is also a global urgency to develop a vaccine against COVID-19, but development and appropriate testing will take at least a year before such a vaccine will be globally available. This review summarizes the lessons learnt so far from the COVID-19 pandemic, examines the evidence regarding the drugs that are being tested for the treatment of COVID19, and describes the progress made in efforts to develop an effective vaccine.
Background and ObjectivesImported malaria poses a serious public health problem in Qatar because its population is “naïve” to such infection; where local transmission might lead to serious, life-threatening infection and might even trigger epidemics.MethodsThis study is a retrospective review of the imported malaria cases in Qatar reported by the malaria surveillance program at the Ministry of Public Health (MoPH), during the period between January 2008 and December 2015. All cases were imported and underwent parasitological confirmation through microscopy.ResultsA total of 4092 malaria cases were reported during 2008–2015 in Qatar. The demographic features of the imported cases show that the majority of cases were males (93%), non-Qatari (99.6%), and aged 15 to 44 years (82.1%). Moreover, P. vivax was found to be the main etiologic agent accounting for more than three-quarters (78.7%) of the imported cases. In addition, almost a third (33.1%) of the cases were reported during the months of July, August, and September.ConclusionsImported malaria in Qatar has witnessed an increase during the past seven years, despite a long period of constant reduction; where the people most affected were adult male migrants from endemic countries. Many challenges need to be overcome to prevent the reintroduction of malaria into the country.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.