The rodent vomeronasal organ plays a crucial role in several social behaviors. Detection of pheromones or other emitted signaling molecules occurs in the dendritic microvilli of vomeronasal sensory neurons, where the binding of molecules to vomeronasal receptors leads to the influx of sodium and calcium ions mainly through the transient receptor potential canonical 2 (TRPC2) channel. To investigate the physiological role played by the increase in intracellular calcium concentration in the apical region of these neurons, we produced localized, rapid, and reproducible increases in calcium concentration with flash photolysis of caged calcium and measured calcium-activated currents with the whole cell voltage-clamp technique. On average, a large inward calcium-activated current of −261 pA was measured at −50 mV, rising with a time constant of 13 ms. Ion substitution experiments showed that this current is anion selective. Moreover, the chloride channel blockers niflumic acid and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid partially inhibited the calcium-activated current. These results directly demonstrate that a large chloride current can be activated by calcium in the apical region of mouse vomeronasal sensory neurons. Furthermore, we showed by immunohistochemistry that the calcium-activated chloride channels TMEM16A/anoctamin1 and TMEM16B/anoctamin2 are present in the apical layer of the vomeronasal epithelium, where they largely colocalize with the TRPC2 transduction channel. Immunocytochemistry on isolated vomeronasal sensory neurons showed that TMEM16A and TMEM16B coexpress in the neuronal microvilli. Therefore, we conclude that microvilli of mouse vomeronasal sensory neurons have a high density of calcium-activated chloride channels that may play an important role in vomeronasal transduction.
The fundamental building blocks of typical electrowetting-on-dielectric (EWOD) actuation and their importance in the EWOD mechanism are introduced and reviewed, respectively. The emphasis in this experimental study of EWOD is on dielectric materials, upon which the performance of EWOD devices is heavily dependent. Dielectric breakdown of several typical polymeric and inorganic insulators employed as dielectrics for EWOD has been analytically investigated, which is forced to occur between the electrodes and conductive liquids under certain threshold potential. The electric breakdown occurring in both dielectric layer and surrounding medium (air or silicon oil) has been studied to build up a mathematical model of breakdown voltage as a function of dielectric thickness. Contact angle measurement of some polymeric materials and self-assembled monolayer using pure water has been carried out to demonstrate the contact angle tunability and reversibility, respectively, upon EWOD actuation.
An optimized capacitively coupled contactless conductivity detector for microchip electophoresis is presented. The detector consists of a pair of top-bottom excitation electrodes and a pair of pickup electrodes disposed onto a very thin plastic microfluidic chip. The detection cell formed by the electrodes is completely encased and shielded in a metal housing. These approaches allow for the enhancement of signal coupling and extraction from the detection cell that result in an improved signal-to-noise-ratio and detection sensitivity. The improved detector performance is illustrated by the electrophoretic separation of six cations (NH(4) (+), K(+), Ca(2+), Na(+), Mg(2+), Li(+)) with a detection limit of approximately 0.3 microM and the analysis of the anions (Br(-), Cl(-), NO(2) (-), NO(3) (-), SO(4) (2-), F(-)) with a detection limit of about 0.15 microM. These LODs are significantly improved compared with previous reports using the conventional top-top electrode geometry. The developed system was applied to the analysis of ions in bottled drinking water samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.