Cobalt/nickel nanoparticles attached to single-walled carbon nanotubes (Co/Ni@SWCNTs) were prepared by dc-arc discharge technique. Co/Ni@SWCNTs were characterized by scanning electron microscopy, high resolution transmission electron microscopy (HRTEM), Raman spectroscopy and energy dispersive X-ray analysis techniques. HRTEM results confirmed attachment of magnetic nanoparticles onto SWCNTs having 1.2 nm diameter. A microwave shielding effectiveness value of 24 dB (blocking >99% radiation) by a 1.5 mm thick sample in the frequency range of 12.4-18 GHz was observed. In order to understand the mechanism of shielding, dielectric and magnetic attributes of the shielding effectiveness of Co/ Ni@SWCNTs have been evaluated. Eddy currents and natural resonances due to the presence of magnetic nanoparticles, electronic polarization and their relaxation, interfacial polarization and unique composition of the shield contributed significantly in achieving good shielding effectiveness. The observed microwave shielding crossed the limit required for commercial applications which suggests that these nanocomposites are promising microwave shielding materials in the Ku band.
SiC-single walled carbon nanotube composites were prepared through the novel route of d.c. arc discharge technique using silicon powder as a filler in a graphite anode and confirmed using X-ray diffraction, Raman spectroscopy and transmission electron microscopy techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.