Sentiment analysis is called detecting emotions extracted from text features and is known as one of the most important parts of opinion extraction. Through this process, we can determine if a script is positive, negative or neutral. In this research, sentiment analysis is performed with textual data. A text feeling analyzer combines natural language processing (NLP) and machine learning techniques to assign weighted assessment scores to entities, subjects, subjects, and categories within a sentence or phrase. In expressing mood, the polarity of text reviews could be graded on a negative to positive scale using a learning algorithm. The current decade has seen significant developments in artificial intelligence, and the machine learning revolution has changed the entire AI industry. After all, machine learning techniques have become an integral part of any model in today's computing world. However, the ensemble to learning techniques is promise a high level of automation with the extraction of generalized rules for text and sentiment classification activities. This thesis aims to design and implement an optimized functionality matrix using to the ensemble learning for the sentiment classification and its applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.