Computer Aided Diagnosis (CAD)systems provides computerized aid to medical practitioners that serves as a second opinion in the detection and diagnosis of diseases .Medical imaging modalities are the most effective non-invasive technique used for the classification of liver diseases .Imaging of abdominal organs for diagnosis of liver disease is usually carried out by Computed tomography. The computer aided diagnosis system consists of mainly four steps like preprocessing, segmentation , feature extraction ,feature selection and classification . This article reviews the various recent CAD systems used for the classification of liver diseases using CT scan images and results of the various methods are summarized.
Synthetic Aperture Radar (SAR) is an all-weather, day and night satellite imaging technology where the radar is mounted on aircraft and successive pulses of radio waves are transmitted to illuminate the target scene. The signal processing of the recorded backscattered echoes produce SAR images. SAR images contain inherent multiplicative speckle noise which is formed due to the constructive and destructive interference of transmitted signals with the returning signals. Speckle noise appears as granular patterns and makes the image interpretation difficult. Non-local means approaches like Block Matching and 3D filtering (BM3D) are effective scheme for removing speckle noise from SAR images. This method gives good performance for additive noise but is not adaptive to curved edges and discontinuities that occur in SAR images affected by multiplicative noise. This paper proposes a three-step refined algorithm to adapt BM3D for despeckling multiplicative speckle noise. In the proposed scheme curvelet is used to find the transform coefficients and this modification in the transform domain improves the despeckling accuracy of BM3D. Also Wiener filtering is replaced with Importance Sampling Unscented Kalman Filtering (ISUKF) for better adapting to discontinuities in the real SAR image. An improved method of grouping is proposed here based on Manhattan distance which better adapts to constantly changing multiplicative noise statistics. A detailed comparative study is carried out on each step using various well-known performance measures. From the results, it is found that the proposed Curvelet-ISUKF-Manhattan BM3D (CIM-BM3D) method of despeckling has better values for all the performance measure and the results are also visually verified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.