We have used magnetization transfer NMR experiments to measure the exchange rate constant (k ex ) of the imino protons in the unbound, cocaine-bound, and quinine-bound forms of the cocaine-binding DNA aptamer. Both long-stem 1 (MN4) and short-stem 1 (MN19) variants were analyzed, corresponding to structures with a prefolded secondary structure and ligandinduced-folding versions of this aptamer, respectively. The k ex values were measured as a function of temperature from 5 to 45 C to determine the thermodynamics of the base pair opening for MN4. We find that the base pairs close to the ligand-binding site become stronger upon ligand binding, whereas those located away from the binding site do not strengthen. With the buffer conditions used in this study, we observe imino 1 H signals in MN19 not previously seen, which leads us to conclude that in the free form, both stem 2 and parts of stem 3 are formed and that the base pairs in stem 1 become structured or more rigid upon binding. This is consistent with the k ex values for MN19 decreasing in both stem 1 and at the ligand-binding site. Based on the temperature dependence of the k ex values, we find that MN19 is more dynamic than MN4 in the free and both ligand-bound forms. For MN4, ligand-binding results in the reduction of dynamics that are localized to the binding site. These results demonstrate that an aptamer in which the base pairs are preformed also experiences a reduction in dynamics with ligand binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.