The TEX 86 (TetraEther indeX of 86 carbons;Schouten et al., 2002), based on glycerol dialkyl glycerol tetraethers (GDGTs), has proven invaluable especially with regard to reconstructing sea water temperatures from deep geologic history (e.g.,
The Last Interglacial (~129,000–116,000 years ago) is the most recent geologic period with a warmer-than-present climate. Proxy-based temperature reconstructions from this interval can help contextualize natural climate variability in our currently warming world, especially if they can define changes on decadal timescales. Here, we established a ~4.800-year-long record of sea surface temperature (SST) variability from the eastern Mediterranean Sea at 1–4-year resolution by applying mass spectrometry imaging of long-chain alkenones to a finely laminated organic-matter-rich sapropel deposited during the Last Interglacial. We observe the highest amplitude of decadal variability in the early stage of sapropel deposition, plausibly due to reduced vertical mixing of the highly stratified water column. With the subsequent reorganization of oceanographic conditions in the later stage of sapropel deposition, when SST forcing resembled the modern situation, we observe that the maximum amplitude of reconstructed decadal variability did not exceed the range of the recent period of warming climate. The more gradual, centennial SST trends reveal that the maximal centennial scale SST increase in our Last Interglacial record is below the projected temperature warming in the twenty-first century.
<p>When a permanent ice cap developed on Antarctica during the Eocene&#8211;Oligocene transition (EOT; ~34.44 to 33.65 million years ago (Ma)), Earth witnessed a transition from a greenhouse towards a glacially driven climate. Evidence of high-latitude cooling and increased latitudinal temperature gradients across the EOT has been found in both marine and terrestrial environments. However, the timing and magnitude of temperature change in the North Atlantic remains poorly constrained.</p><p>Here, we used two independent organic geochemical palaeothermometers derived from (i) alkenones and (ii) Glycerol Dialkyl Glycerol Tetraether (GDGT) lipids, to reconstruct sea surface temperature (SST) evolution across the EOT from the southern Labrador Sea (Sites: ODP 647 and DSDP 112). In the Labrador Sea alkenones do not appear until the earliest Oligocene (both sites) while GDGT lipids (analysed in Site 647 only) provides a well-constrained temperature record across the EOT. &#160;</p><p>Our SST records provide the most detailed record for the northern North Atlantic through the 1 Myr leading up to the EOT onset, and reveals a distinctive cooling step of ~3 &#186;C (from 27 to 24 &#186;C), between 34.9 and 34.3 Ma, ~500 kyr prior to Antarctic glaciation. This cooling step, when compared visually to other SST records, is asynchronous across North and South Atlantic sites. This illustrates a considerable spatiotemporal variability in SST evolution in the northern sector of the North Atlantic and the Norwegian-Greenland Sea. Overall, the cooling step fits within a phase of general SST cooling recorded across sites in the North Atlantic in the 5 Myr interval bracketing the EOT.</p><p>We used a modelling study (GFDL CM2.1) to try and reconcile the observation of pre-EOT cooling with the hypothesis that Atlantic Meridional Overturning Circulation (AMOC) switched on or intensified on the lead up to the EOT, which would be expected to have warmed the North Atlantic region. Results suggest that a reduction in atmospheric CO<sub>2</sub> from 800 to 400 ppm may be sufficient to counter warming from an AMOC start-up. In the model, the AMOC start-up is initiated during closure of the Arctic&#8211;Atlantic gateway.</p><p>While the model simulations applied here are not yet in full equilibrium, and the experiments are idealized, the results, together with the proxy data, highlight the heterogeneity of basin-scale surface ocean responses to the EOT thermohaline changes, with sharp temperature contrasts expected across the northern North Atlantic as positions of the subtropical and subpolar gyre systems shift in response to climatic and oceanic adjustments.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.