The transition from hunting to herding transformed the cold, arid steppes of Mongolia and Eastern Eurasia into a key social and economic center of the ancient world, but a fragmentary archaeological record limits our understanding of the subsistence base for early pastoral societies in this key region. Organic material preserved in high mountain ice provides rare snapshots into the use of alpine and high altitude zones, which played a central role in the emergence of East Asian pastoralism. Here, we present the results of the first archaeological survey of melting ice margins in the Altai Mountains of western Mongolia, revealing a near-continuous record of more than 3500 years of human activity. Osteology, radiocarbon dating, and collagen fingerprinting analysis of wooden projectiles, animal bone, and other artifacts indicate that big-game hunting and exploitation of alpine ice played a significant role during the emergence of mobile pastoralism in the Altai, and remained a core element of pastoral adaptation into the modern era. Extensive ice melting and loss of wildlife in the study area over recent decades, driven by a warming climate, poaching, and poorly regulated hunting, presents an urgent threat to the future viability of herding lifeways and the archaeological record of hunting in montane zones.
Beveled retouch on stone projectile points has often been considered as a device to spin and stabilize a projectile. A recent paper showed that a beveled point will spin a small shaft under tightly controlled laboratory conditions. However, this experiment has little relevance for real projectiles such as atlatl darts, which flex dramatically and spin unevenly inflight, quite independent of point form. The spinning is related to the flexibility of the dart, which is necessary for spearthrower functión. A beveled point cannot spin a dart in the air, but is likely to cause some rotation when encountering a solid target like flesh. Beveled points are probably not related to spinning either darts or arrows inflight and present a good example of why we need to have both theoretical understanding and experimental observations of details of projectile behavior before interpreting artifacts. Spinning in a carcass could make beveled points more lethal, but the suggestion that beveling mostly results from sharpening and other modification of stone points remains the best explanation.
When they work, controlled experiments can efficiently and clearly reveal essential characteristics of the functions and performance of ancient hunting and fighting weapons. However, homogenous target media must be carefully validated to ensure that controlled tests capture the same variables that made weapons effective in their original application. Although homogenous flesh simulants have proven effective for studying firearms, the same simulants cannot be assumed to be effective when testing low-velocity cutting/piercing projectiles, which have significantly different performance characteristics than bullets. We build on past research showing that two flesh simulants that are commonly used by archaeologists, ballistics gelatin and pottery clay, fail to capture how atlatl darts and arrows perform when penetrating biological tissues. In accord with forensic research of knife-thrust attacks, natural and polymeric skin simulants may prove effective in future experiments, but this requires further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.