The hippocampus is essential for spatial and episodic memory but is damaged early in Alzheimer’s disease and is very sensitive to hypoxia. Understanding how it regulates its oxygen supply is therefore key for designing interventions to preserve its function. However, studies of neurovascular function in the hippocampus in vivo have been limited by its relative inaccessibility. Here we compared hippocampal and visual cortical neurovascular function in awake mice, using two photon imaging of individual neurons and vessels and measures of regional blood flow and haemoglobin oxygenation. We show that blood flow, blood oxygenation and neurovascular coupling were decreased in the hippocampus compared to neocortex, because of differences in both the vascular network and pericyte and endothelial cell function. Modelling oxygen diffusion indicates that these features of the hippocampal vasculature may restrict oxygen availability and could explain its sensitivity to damage during neurological conditions, including Alzheimer’s disease, where the brain’s energy supply is decreased.
Changes in microglial morphology are powerful indicators of the inflammatory state of the brain. Here, we provide an open-source microglia morphology analysis pipeline that first cleans and registers images of microglia, before extracting 62 parameters describing microglial morphology. It then compares control and ‘inflammation’ training data and uses dimensionality reduction to generate a single metric of morphological change (an ‘inflammation index’). This index can then be calculated for test data to assess inflammation, as we demonstrate by investigating the effect of short-term high-fat diet consumption in heterozygous Cx3CR1-GFP mice, finding no significant effects of diet. Our pipeline represents the first open-source microglia morphology pipeline combining semi-automated image processing and dimensionality reduction. It uses free software (ImageJ and R) and can be applied to a wide variety of experimental paradigms. We anticipate it will enable others to more easily take advantage of the powerful insights microglial morphology analysis provides.
The hippocampus is essential for spatial and episodic memory but is damaged early in Alzheimer's disease and is very sensitive to hypoxia. Understanding how it regulates its oxygen supply is therefore key for designing interventions to preserve its function. However, studies of neurovascular function in the hippocampus in vivo have been limited by its relative inaccessibility.Here we compared hippocampal and visual cortical neurovascular function in awake mice, using two photon imaging of individual neurons and vessels and measures of regional blood flow and haemoglobin oxygenation. We show that blood flow, blood oxygenation and neurovascular coupling were decreased in the hippocampus compared to neocortex, because of differences in both the vascular network and pericyte and endothelial cell function. Modelling oxygen diffusion indicates that these features of the hippocampal vasculature could explain its sensitivity to damage during neurological conditions, including Alzheimer's disease, where the brain's energy supply is decreased.
In this study we investigated effects of the APOE ε4 allele (which confers an enhanced risk of poorer cognitive ageing, and Alzheimer’s Disease) on sustained attention (vigilance) performance in young adults using the Rapid Visual Information Processing (RVIP) task and event-related fMRI. Previous fMRI work with this task has used block designs: this study is the first to image an extended (6-minute) RVIP task. Participants were 26 carriers of the APOE ε4 allele, and 26 non carriers (aged 18–28). Pupil diameter was measured throughout, as an index of cognitive effort. We compared activity to RVIP task hits to hits on a control task (with similar visual parameters and response requirements but no working memory load): this contrast showed activity in medial frontal, inferior and superior parietal, temporal and visual cortices, consistent with previous work, demonstrating that meaningful neural data can be extracted from the RVIP task over an extended interval and using an event-related design. Behavioural performance was not affected by genotype; however, a genotype by condition (experimental task/control task) interaction on pupil diameter suggested that ε4 carriers deployed more effort to the experimental compared to the control task. fMRI results showed a condition by genotype interaction in the right hippocampal formation: only ε4 carriers showed downregulation of this region to experimental task hits versus control task hits. Experimental task beta values were correlated against hit rate: parietal correlations were seen in ε4 carriers only, frontal correlations in non-carriers only. The data indicate that, in the absence of behavioural differences, young adult ε4 carriers already show a different linkage between functional brain activity and behaviour, as well as aberrant hippocampal recruitment patterns. This may have relevance for genotype differences in cognitive ageing trajectories.
Vascular dysfunction is an early feature of late onset Alzheimer's disease (AD), preceding classic AD pathology such as beta amyloid accumulation and formation of hyperphosphorylated tau. Such vascular dysfunction may promote classic AD pathology by decreasing blood flow, impairing brain oxygenation and clearance of molecules such as beta amyloid. The main genetic risk factor for AD is the ϵ4 allele of APOE, which has been found to increase blood brain barrier permeability and decrease vascular density, as well as decrease blood flow and functional hyperaemia in anaesthetised mice undergoing acute surgery. These results suggest that APOE4 may confer AD risk via its effects on the vasculature. However, the responses of neurons and individual vessels have not been studied, so neurovascular relationships are unknown, and no previous studies have looked at awake mice. We therefore measured neurovascular responses at rest and in response to visual stimulation using 2 photon imaging of awake APOE3 and APOE4 targeted-replacement (APOE TR) mice that expressed the calcium indicator GCaMP6f in excitatory neurons, while labelling the vascular lumen with Texas Red dextran. In parallel, we measured cerebral blood flow, blood oxygenation and cerebral blood volume using combined laser Doppler flowmetry and haemoglobin spectrometry. Measurements were performed in mice aged between 3-4 months to 12-13 months. We found a milder vascular deficit in awake mice than previous studies that used an acute surgical preparation: capillary responses to visual stimulation were the same in APOE3 and APOE4 TR mice, leading to unimpaired functional hyperaemia. However, neuronal calcium signals during visual stimulation were significantly enhanced in APOE4 mice, while there was a marked decrease in pial arteriole responsiveness and vasomotion. This pattern of results was unaffected by age, suggesting that APOE4 expression creates a stable, but mildly altered neurovascular state that does not itself cause degeneration. However, these changes likely make the system more sensitive to subsequent insults; for example, weaker vasomotion could impair clearance of beta amyloid as it starts to accumulate, and therefore may help explain how APOE4 expression increases risk of developing AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.