The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.DNA sequencing and, more recently, massively parallel DNA sequencing 1-4 has had a profound impact on research and medicine. The reductions in cost and time for generating DNA sequence have resulted in a range of new sequencing applications in cancer 5,6 , human genetics 7 , infectious diseases 8 and the study of personal genomes 9-11 , as well as in fields as diverse as ecology 12,13 and the study of ancient DNA 14,15 . Although de novo sequencing costs have dropped substantially, there is a desire to continue to drop the cost of sequencing at an exponential rate consistent with the semiconductor industry's Moore's Law 16 as well as to provide lower cost, faster and more portable devices. This has been operationalized by the desire to reach the $1,000 genome 17 .To date, DNA sequencing has been limited by its requirement for imaging technology, electromagnetic intermediates (either X-rays 18 , or light 19 ) and specialized nucleotides or other reagents 20 . To overcome these limitations and further democratize the practice of sequencing, a paradigm shift based on non-optical sequencing on newly developed integrated circuits was pursued. Owing to its scalability and its low power requirement, CMOS processes are dominant in modern integrated circuit manufacturing 21 . The ubiquitous nature of computers, digital cameras and mobile phones has been made possible by the low-cost production of integrated circuits in CMOS.Leveraging advances in the imaging field-which has produced large, fast arrays for photonic imaging 22 -we sought a suitable electronic sensor for the construction of an integrated circuit to detect the hydrogen ions that would be released by DNA polymerase 23 during sequencing by synthesis, as opposed to a sensor designed for the detection of photons. Although a variety ...
The early detection of cancers through analysis of circulating DNA could have a substantial impact on morbidity and mortality. To achieve this goal, it is essential to determine the number of mutant molecules present in the circulation of cancer patients and to develop methods that are sufficiently sensitive to detect these mutations. Using a modified version of a recently developed assay for this purpose, we found that patients with advanced colorectal cancers consistently contained mutant adenomatous polyposis coli (APC) DNA molecules in their plasma. The median number of APC DNA fragments in such patients was 47,800 per ml of plasma, of which 8% were mutant. Mutant APC molecules were also detected in >60% of patients with early, presumably curable colorectal cancers, at levels ranging from 0.01% to 1.7% of the total APC molecules. These results have implications for the mechanisms through which tumor DNA is released into the circulation and for diagnostic tests based on this phenomenon.colorectal cancer ͉ plasma DNA ͉ tumor suppressor gene ͉ circulating DNA ͉ diagnosis
The presence of hundreds of copies of mitochondrial (mt) DNA in each human cell poses a challenge for complete characterization of mtDNA genomes by conventional sequencing technologies1. Here, we describe digital sequencing of mtDNA genomes using massively parallel sequencing-by-synthesis. Though the mtDNA of human cells is considered to be homogeneous, we found widespread heterogeneity (heteroplasmy) in the mtDNA of normal human cells. Moreover, the frequency of heteroplasmic variants among different tissues of the same individual varied considerably. In addition to the variants identified in normal tissues, cancer cells harbored additional homoplasmic and heteroplasmic mutations that could also be detected in patient plasma. These studies provide new insights into the nature and variability of mtDNA sequences and have intriguing implications for mitochondrial processes during embryogenesis, cancer biomarker development, and forensic analysis. In particular, they demonstrate that individual humans are characterized by a complex mixture of related mitochondrial genotypes rather than a single genotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.