The benefits of self-fertilization can vary across environments, leading to selection for different reproductive strategies and influencing the evolution of floral traits. Although stressful conditions have been suggested to favour self-pollination, the role of climate as a driver of mating-system variation is generally not well understood. Here, we investigate the contributions of local climate to intraspecific differences in mating-system traits in Clarkia pulchella Pursh in a common-garden growth chamber experiment. We also tested for plastic responses to soil moisture with watering treatments. Herkogamy (anther–stigma spacing) correlated positively with dichogamy (timing of anther–stigma receptivity) and date of first flower, and northern populations had smaller petals and flowered earlier in response to experimental drought. Watering treatment alone had little effect on traits, and dichogamy unexpectedly decreased with annual precipitation. Populations also differed in phenological response to watering treatment, based on precipitation and winter temperature of their origin, indicating that populations from cool and dry sites have greater plasticity under different levels of moisture stress. While some variation in floral traits is attributable to climate, further investigation into variation in pollinator communities and the indirect effects of climate on mating system can improve our understanding of the evolution of plant mating.
Herbarium records provide a broad spatial and temporal range with which to investigate plant responses to environmental change. Research on plant phenology and its sensitivity to climate has advanced with the increasing availability of digitized herbarium specimens, but limitations of specimen-derived data can undermine the inferences derived from such research. One issue that has received little attention is collection site uncertainty (i.e. error distance), a measure of confidence in the location from which a specimen was collected. We conducted comparative analyses of phenoclimatic models to determine whether spatial deviations of 2, 5, 15 or 25 km between recorded and simulated collection sites, as well as the error distance reported in digitized records, affect estimates of the phenological sensitivity of flowering time to annual temperature and precipitation in a widespread annual California wildflower. In this approach, we considered both spatial and interannual variation in climatic conditions. Simulated site displacements led to increasingly weak estimates of phenological sensitivity to temperature and precipitation anomalies with increasing distances. However, we found no significant effect of reported error distance magnitude on estimates of phenological sensitivity to climate normals or anomalies. These findings suggest that the spatial uncertainty of collection sites among specimens of widely collected plant species may not adversely affect estimates of phenological sensitivity to climate, even though real discrepancies and georeferencing inaccuracy can negatively impact such estimates. Collection site uncertainty merits further attention as a potential source of noise in herbarium data, especially for research on how plant traits respond to spatial and interannual climatic variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.