Here we describe a high-throughput, quantitative method for the isolation of enzymes with novel substrate specificities from large libraries of protein variants. Protein variants are displayed on the surface of microorganisms and incubated with a synthetic substrate consisting of (1) a fluorescent dye (2) a positively charged moiety (3) the target scissile bond, and (4) a fluorescence resonance energy transfer (FRET) quenching partner. Enzymatic cleavage of the scissile bond results in release of the FRET quenching partner while the fluorescent product is retained on the cell surface, allowing isolation of catalytically active clones by fluorescence-activated cell sorting (FACS). Using a synthetic substrate with these characteristics, we enriched Escherichia coli expressing the serine protease OmpT from cells expressing an inactive OmpT variant by over 5,000-fold in a single round. Screening a library of 6 x 10(5) random OmpT variants by FACS using a FRET peptide substrate with a nonpreferred Arg-Val cleavage sequence resulted in the isolation of variant proteases with catalytic activities enhanced by as much as 60-fold. This approach represents a potentially widely applicable method for high-throughput screening of large libraries on the basis of catalytic turnover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.