Long-term synaptic depression (LTD) in cortico-striatal circuits is initiated by depolarization of striatal medium spiny neurons through a convergent cortical glutamatergic input. This produces retrograde endocannabinoid signaling to presynaptic cortical terminals and eventually results in long term (>30 min) decreases in glutamate release. These same circuits can also undergo short-term depression (STD) through a less well-defined process in which the magnitude of postsynaptic responses returns to baseline levels within 10 min. Additionally, the cortico-striatal circuit shows characteristics of a GABAA receptor-dependent low-pass filter, which results in significant attenuation of high frequency cortical inputs. The majority of in vitro studies of LTD have used a 100-Hz induction paradigm and it is unclear whether other frequencies, which may also have physiological relevance, have equivalent ability to induce this form of plasticity. Here we have investigated the effectiveness of a range of induction paradigms in producing LTD in cortico-striatal circuits, and demonstrate that some lower frequency paradigms, with perhaps more physiological relevance, are more effective at inducing LTD. We also show that GABAA receptor-dependent frequency filtering in this circuit is altered following the induction of LTD and STD suggesting an important role for synaptic depression in signal processing in these circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.