In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.
Seawater desalination for agricultural irrigation will be an important contributor to satisfying growing water demands in water scarce regions. Irrigated agriculture for food production drives global water demands, which are expected to increase while available supplies are further diminished. Implementation of reverse osmosis, the current leading technology for seawater desalination, has been limited in part because of high costs and energy consumption. Because of stringent boron and chloride standards for agricultural irrigation water, desalination for agriculture is more energy intensive than desalination for potable use, and additional post-treatment, such as a second pass reverse osmosis process, is required. In this perspective, we introduce the concept of an integrated forward osmosis and reverse osmosis process for seawater desalination. Process modeling results indicate that the integrated process can achieve boron and chloride water quality requirements for agricultural irrigation while consuming less energy than a conventional two-pass reverse osmosis process. The challenges to further development of an integrated forward and reverse osmosis desalination process and its potential benefits beyond energy savings are discussed.
Forward osmosis (FO) is an emerging membrane-based water separation process with potential applications in a host of environmental and industrial processes. Nevertheless, membrane fouling remains a technical obstacle affecting this technology, increasing operating costs and decreasing membrane life. This work presents the first fabrication of an antifouling thin-film composite (TFC) FO membrane by an in situ technique without postfabrication treatment. The membrane was fabricated and modified in situ, grafting Jeffamine, an amine-terminated poly(ethylene glycol) derivative, to dangling acyl chloride surface groups on the nascent polyamide active layer. Surface characterization by contact angle, Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), zeta potential, atomic force microscopy (AFM), and fluorescence microscopy, confirms the presence of Jeffamine on the membrane surface. We demonstrate the improved fouling resistance of the in situ modified membranes through accelerated dynamic fouling FO experiments using a synthetic wastewater feed solution at high concentration (250 mg/L) of alginate, a model macromolecule for the hydrophilic fraction of wastewater effluent organic matter. Our results show a significantly lower flux decline for the in situ modified membranes compared to pristine polyamide (14.3 ± 2.7% vs 2.8 ± 1.4%, respectively). AFM adhesion force measurements between the membrane and a carboxylate-modified latex particle, a surrogate for the organic (alginate) foulant, show weaker foulant-membrane interactions, further confirming the enhanced fouling resistance of the in situ modified membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.