The microbially derived polyhydroxyalkanoates biopolymers could impact the global climate scenario by replacing the conventional non-degradable, petrochemical-based polymer. The biogenesis, characterization and properties of PHAs by Bacillus species using renewable substrates have been elaborated by many for their wide applications. On the other hand Bacillus species are advantageous over other bacteria due to their abundance even in extreme ecological conditions, higher growth rates even on cheap substrates, higher PHAs production ability, and the ease of extracting the PHAs. Bacillus species possess hydrolytic enzymes that can be exploited for economical PHAs production. This review summarizes the recent trends in both non-growth and growth associated PHAs production by Bacillus species which may provide direction leading to future research towards this growing quest for biodegradable plastics, one more critical step ahead towards sustainable development.
Currently, one of the major problem affecting the world is solid waste management, predominantly petroleum-based plastic and fish solid waste (FSW). However, it is very difficult to reduce the consumption of plastic as well as fish products, but it is promising to convert FSW to biopolymer to reduce eco-pollution. On account of that, the bioconversion of FSW extract to polyhydroxybutyrate (PHB) was undertaken by using Bacillus subtilis (KP172548). Under optimized conditions, 1.62 g/L of PHB has been produced by the bacterium. The purified compound was further characterized by advanced analytical technologies to elucidate its chemical structure. Results indicated that the biopolymer was found to be PHB, the most common homopolymer of polyhydroxyalkanoates (PHAs). This is the first report demonstrating the efficacy of B. subtilis to utilize FSW extract to produce biopolymer. The biocompatibility of the PHB against murine macrophage cell line RAW264.7 demonstrated that, it was comparatively less toxic, favourable for surface attachment and proliferation in comparison with poly-lactic acid (PLA) and commercially available PHB. Thus, further exploration is highly indispensable to use FSW extract as a substrate for production of PHB at pilot scale.
Carbonic
anhydrase (CA) is a family of metalloenzymes that has
the potential to sequestrate carbon dioxide (CO2) from
the environment and reduce pollution. The goal of this study is to
apply protein engineering to develop a modified CA enzyme that has
both higher stability and activity and hence could be used for industrial
purposes. In the current study, we have developed an in silico method
to understand the molecular basis behind the stability of CA. We have
performed comparative molecular dynamics simulation of two homologous
α-CA, one of thermophilic origin (Sulfurihydrogenibium sp.) and its mesophilic counterpart (Neisseria gonorrhoeae), for 100 ns each at 300, 350, 400, and 500 K. Comparing the trajectories
of two proteins using different stability-determining factors, we
have designed a highly thermostable version of mesophilic α-CA
by introducing three mutations (S44R, S139E, and K168R). The designed
mutant α-CA maintains conformational stability at high temperatures.
This study shows the potential to develop industrially stable variants
of enzymes while maintaining high activity.
Municipal sewage triggers a stress prone environment to accumulate polyhydroxyalkanoates (PHAs) in the cytosol of bacteria. In view of that, different Bacillus species were isolated from municipal sewage and screened for evaluating their efficacy of PHA production. Growth parameters such as temperature, pH, glucose concentration and carbon nitrogen combinations were optimized with respect to higher biomass production as it is analogous to PHA accumulation. Under optimized conditions, the Bacillus species produced 3.09 g/L of PHAs which was estimated as a higher yield in comparison to other similar strains. Fourier transform infrared spectroscopic analysis of the extracted polyhydroxybutyrate confirmed the distinct peak corresponding to C=O group, whereas proton nuclear magnetic resonance ( 1 H NMR) and differential scanning colorimetric analysis exhibited detailed insight of its chemical structure and properties by reflecting monomeric unit. The high yielding bacterial isolate was identified by 16S rDNA sequencing and the sequence was confirmed as Bacillus subtilis with an accession no. KP172548 after submission to NCBI data base. The potential bacterium may be further exploited for cost effective and mass scale production of biopolymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.