Background: Radiation therapy is considered as an important tool in cancer treatment. Despite its impressive role in treating cancer, severe side effects in organs have been reported. To address these therapeutic side effects, several combination methods have been identified to minimize adverse effects caused by radiation therapy. Aims and Objectives: Based on higher radioactive sensitivity of testicular tissues, administration of Chlorophytum borivilianum (CB) Sant. F extracts was evaluated for its protective effects against radiation in testis. Materials and methods: Two forms of CB extracts (CB alone and CB-silver nanoparticles [AgNPs]) were administered at a dose of 50 mg/kg body weight in Swiss albino male mice for 7 consecutive days. Following 6 Gy gamma radiation, animals were observed for 30 days in four phases. Sperm counts, body weight, testicular weight and stereological and histological evaluation of testis were evaluated. Results: Following irradiation, a significant decline in body weight (P = 0.008) and testicular weight (P = 0.001) was noted when compared with control. Ununiformed type A and B spermatogonia, partially filled tubules, inter-tubular vacuoles, and disrupted epithelium were the main types of damages caused by irradiation. Reorganization and resumption of histological features emerged from the 15 th day postirradiation in CB extract (CBE)-treated animals. Conclusion: Testicular response was observed against radiation in animals treated with CB extracts, while CB-AgNPs indicated better toleration when compared to CB extract alone.
Nowadays, multidrug antimicrobial resistance is a very common issue globally. Antimicrobial resistance is fueling the fire, and it has been noted that infectious disease incidence and deaths are rising throughout the world. Many pathogens have been reported to develop resistance to these synthetic and semi-synthetic drugs leading to minimized efficacy and resulting in substantial economic losses all over the world. A new approach for choosing natural extracts of plants and fungi as medicines and natural antibacterial agents has been developed to address this challenge. According to recent investigations and research, mushrooms and their extracts contain bioactive compounds that can be used as a natural antibacterial alternative against a number of bacterial species. In addition to having medical properties like antibacterial, anticancer, and antioxidant activity, mushrooms are a highly nutritious food source. The present study emphasized on the antimicrobial resistance, mechanisms and antibacterial properties of mushrooms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.