Despite major advances in understanding the molecular and genetic basis of cancer, metastasis remains the cause of >90% of cancer-related mortality1. Understanding metastasis initiation and progression is critical to developing new therapeutic strategies to treat and prevent metastatic disease. Prevailing theories hypothesize that metastases are seeded by rare tumour cells with unique properties, which may function like stem cells in their ability to initiate and propagate metastatic tumours2–5. However, the identity of metastasis-initiating cells in human breast cancer remains elusive, and whether metastases are hierarchically organized is unknown2. Here we show at the single-cell level that early stage metastatic cells possess a distinct stem-like gene expression signature. To identify and isolate metastatic cells from patient-derived xenograft models of human breast cancer, we developed a highly sensitive fluorescence-activated cell sorting (FACS)-based assay, which allowed us to enumerate metastatic cells in mouse peripheral tissues. We compared gene signatures in metastatic cells from tissues with low versus high metastatic burden. Metastatic cells from low-burden tissues were distinct owing to their increased expression of stem cell, epithelial-to-mesenchymal transition, pro-survival, and dormancy-associated genes. By contrast, metastatic cells from high-burden tissues were similar to primary tumour cells, which were more heterogeneous and expressed higher levels of luminal differentiation genes. Transplantation of stem-like metastatic cells from low-burden tissues showed that they have considerable tumour-initiating capacity, and can differentiate to produce luminal-like cancer cells. Progression to high metastatic burden was associated with increased proliferation and MYC expression, which could be attenuated by treatment with cyclin-dependent kinase (CDK) inhibitors. These findings support a hierarchical model for metastasis, in which metastases are initiated by stem-like cells that proliferate and differentiate to produce advanced metastatic disease.
The ability to isolate prostate stem cells is essential to explore their role in prostate development and disease. In vitro prostate colonyand sphere-forming assays were used to quantitatively measure murine prostate stem/progenitor cell enrichment and self-renewal. Cell surface markers were screened for their ability to positively or negatively enrich for cells with enhanced growth potential in these assays. Immunohistochemical and FACS analyses demonstrate that specific cell surface markers can be used to discriminate prostate stromal (CD34 ؉ ), luminal epithelial (CD24 ؉ CD49f ؊ ), basal epithelial (CD24 ؉ CD49f ؉ ), hematopoietic (CD45 ؉ , Ter119 ؉ ), and endothelial (CD31 ؉ ) lineages. Sorting for cells with a CD45 ؊ CD31 ؊ Ter119 ؊ Sca-1 ؉ CD49f ؉ antigenic profile results in a 60-fold enrichment for colony-and sphere-forming cells. These cells can self-renew and expand to form spheres for many generations and can differentiate to produce prostatic tubule structures containing both basal and luminal cells in vivo. These cells also localize to the basal cell layer within the region of the gland that is proximal to the urethra, which has been identified as the prostate stem cell niche. Prostate stem cells can be isolated to a purity of up to 1 in 35 by using this antigenic profile. The remarkable similarity in cell surface profile between prostate and mammary gland stem cells suggests these markers may be conserved among epithelial stem cell populations.CD49f ͉ integrin ␣6 ͉ Sca-1 ͉ CD24 heat-stable antigen ͉ stem cell niche S tem cells are of interest clinically because of their potential to repair damaged tissues, treat degenerative diseases, and because of their purported role in tumor initiation. The ability to identify and isolate stem cells is necessary to study their specialized biology. Enrichment for many types of tissue stem cells has been achieved by using cell surface markers. Murine hematopoietic stem cells can be enriched by sorting Lin Ϫ Thy-1 lo Sca-1 ϩ ckit ϩ cells from the bone marrow (1). Recent studies suggest that even better purity can be achieved by further sorting based on expression of the SLAM family receptors CD150 and CD48 (2). Bronchioavelolar stem cells can be isolated from their niche at the bronchioalveolar duct junction (BADJ) by sorting cells with a CD45 Ϫ CD31 Ϫ Sca-1 ϩ CD34 ϩ profile (3). Data from two recent reports show that mouse mammary stem cells possess a Lin Ϫ Sca-1 ϩ CD140a Ϫ CD24 ϩ CD49f ϩ CD29 ϩ cell surface profile and can be isolated to a purity of up to 1 in 20 by using subsets of these markers (4, 5).The presence of stem cells in the prostate first was proposed to explain the seemingly inexhaustible capacity of the organ to regenerate during androgen cycling experiments (6). The identification of side-population cells and replication quiescent BrdU label-retaining cells further suggests that stem cells exist in the gland (7,8). Several studies have enriched for primitive prostate cells by using cell surface markers. Richardson et al. (9) demonstrated that th...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.