Motivation The human leukocyte antigen (HLA) locus plays a critical role in tissue compatibility and regulates the host response to many diseases, including cancers and autoimmune di3orders. Recent improvements in the quality and accessibility of next-generation sequencing have made HLA typing from standard short-read data practical. However, this task remains challenging given the high level of polymorphism and homology between HLA genes. HLA typing from RNA sequencing is further complicated by post-transcriptional modifications and bias due to amplification. Results Here, we present arcasHLA: a fast and accurate in silico tool that infers HLA genotypes from RNA-sequencing data. Our tool outperforms established tools on the gold-standard benchmark dataset for HLA typing in terms of both accuracy and speed, with an accuracy rate of 100% at two-field resolution for Class I genes, and over 99.7% for Class II. Furthermore, we evaluate the performance of our tool on a new biological dataset of 447 single-end total RNA samples from nasopharyngeal swabs, and establish the applicability of arcasHLA in metatranscriptome studies. Availability and implementation arcasHLA is available at https://github.com/RabadanLab/arcasHLA. Supplementary information Supplementary data are available at Bioinformatics online.
Background Respiratory viral infections are a major cause of morbidity and mortality worldwide. However, their characterization is incomplete because prevalence estimates are based on syndromic surveillance data. Here, we address this shortcoming through the analysis of infection rates among individuals tested regularly for respiratory viral infections, irrespective of their symptoms. Methods We carried out longitudinal sampling and analysis among 214 individuals enrolled at multiple New York City locations from fall 2016 to spring 2018. We combined personal information with weekly nasal swab collection to investigate the prevalence of 18 respiratory viruses among different age groups and to assess risk factors associated with infection susceptibility. Results 17.5% of samples were positive for respiratory viruses. Some viruses circulated predominantly during winter, whereas others were found year round. Rhinovirus and coronavirus were most frequently detected. Children registered the highest positivity rates, and adults with daily contacts with children experienced significantly more infections than their counterparts without children. Conclusion Respiratory viral infections are widespread among the general population with the majority of individuals presenting multiple infections per year. The observations identify children as the principal source of respiratory infections. These findings motivate further active surveillance and analysis of differences in pathogenicity among respiratory viruses.
Respiratory viral infections are a leading cause of disease worldwide. A variety of respiratory viruses produce infections in humans with effects ranging from asymptomatic to life-treathening. Standard surveillance systems typically only target severe infections (ED outpatients, hospitalisations, deaths) and fail to track asymptomatic or mild infections. Here we performed a large-scale community study across multiple age groups to assess the pathogenicity of 18 respiratory viruses. We enrolled 214 individuals at multiple New York City locations and tested weekly for respiratory viral pathogens, irrespective of symptom status, from fall 2016 to spring 2018. We combined these test results with participant-provided daily records of cold and flu symptoms and used this information to characterise symptom severity by virus and age category. Asymptomatic infection rates exceeded 70% for most viruses, excepting influenza and human metapneumovirus, which produced significantly more severe outcomes. Symptoms were negatively associated with infection frequency, with children displaying the lowest score among age groups. Upper respiratory manifestations were most common for all viruses, whereas systemic effects were less typical. These findings indicate a high burden of asymptomatic respiratory virus infection exists in the general population.
Respiratory viruses are common in human populations, causing significant levels of morbidity. Understanding the distribution of these viruses is critical for designing control methods. However, most data available are from medical records and thus predominantly represent symptomatic infections. Estimates for asymptomatic prevalence are sparse and span a broad range. In this study, we aimed to measure more precisely the proportion of infections that are asymptomatic in a general, ambulatory adult population. We recruited participants from a New York City tourist attraction and administered nasal swabs, testing them for adenovirus, coronavirus, human metapneumovirus, rhinovirus, influenza virus, respiratory syncytial virus, and parainfluenza virus. At recruitment, participants completed surveys on demographics and symptomology. Analysis of these data indicated that over 6% of participants tested positive for shedding of respiratory virus. While participants who tested positive were more likely to report symptoms than those who did not, over half of participants who tested positive were asymptomatic.
To determine rates of both symptomatic and asymptomatic infection among ambulatory adults, we collected nasopharyngeal swab specimens, demographic characteristics, and survey information from 1477 adult visitors to a New York City tourist attraction during April-July 2016. Multiplex polymerase chain reaction analysis was used to identify specimens positive for common respiratory viruses. A total of 7.2% of samples tested positive for respiratory viruses; among positive samples, 71.0% contained rhinovirus, and 21.5% contained coronavirus. Influenza virus, respiratory syncytial virus, and parainfluenza virus were also detected. Depending on symptomatologic definition, 57.7%-93.3% of positive samples were asymptomatic. These findings indicate that significant levels of asymptomatic respiratory viral shedding exist during summer among the ambulatory adult population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.