Excessive neutrophil migration across the pulmonary endothelium into the lung and release of oxidants and proteases are key elements in pathogenesis of acute lung injury. Previously, we identified protein kinase C-delta (PKCδ) as an important regulator of proinflammatory signaling in human neutrophils and demonstrated that intratracheal instillation of a TAT-conjugated PKCδ inhibitory peptide (PKCδ-TAT) is lung protective in a rat model of sepsis-induced indirect pulmonary injury (cecal ligation and puncture). In the present study, intratracheal instillation of this PKCδ inhibitor resulted in peptide distribution throughout the lung parenchyma and pulmonary endothelium and decreased neutrophil influx, with concomitant attenuation of sepsis-induced endothelial ICAM-1 and VCAM-1 expression in this model. To further delineate the role of PKCδ in regulating neutrophil migration, we used an in vitro transmigration model with human pulmonary microvascular endothelial cells (PMVECs). Consistent with in vivo findings, inhibition of PMVEC PKCδ decreased IL-1β-mediated neutrophil transmigration. PKCδ regulation was stimulus-dependent; PKCδ was required for transmigration mediated by IL-1β and fMLP (integrin-dependent), but not IL-8 (integrin-independent). PKCδ was essential for IL-1β-mediated neutrophil adherence and NF-κB-dependent expression of ICAM-1 and VCAM-1. In PMVECs, IL-1β-mediated production of ROS and activation of redox-sensitive NF-κB were PKCδ dependent, suggesting an upstream signaling role. Thus, PKCδ has an important role in regulating neutrophil-endothelial cell interactions and recruitment to the inflamed lung.
A key step in neutrophil-mediated tissue damage is the migration of activated neutrophils across the vascular endothelium. Previously, we identified protein kinase C δ as a critical regulator of neutrophil migration in sepsis but did not identify specific steps in migration. In this study, we used our novel biomimetic microfluidic assay to delineate systematically the mechanism by which protein kinase C δ regulates individual steps in human neutrophil-endothelial interaction during inflammation. The biomimetic microfluidic assay includes a network of vascular channels, produced from in vivo images connected to a tissue compartment through a porous barrier. HUVECs cultured in vascular channels formed a complete lumen under physiologic shear flow. HUVECs were pretreated with TNF-α ± a protein kinase C δ inhibitor, and the tissue compartment was filled with a chemoattractant (fMLP or IL-8). Under physiologic shear flow, the role of protein kinase C δ on spatial and temporal neutrophil adherence/migration was quantified. Protein kinase C δ inhibition significantly reduced neutrophil adhesion in response to fMLP and IL-8 only under low shear rate and near bifurcations. Protein kinase C δ inhibition also decreased adherence to nonactivated HUVECs in response to fMLP or IL-8. Protein kinase C δ inhibition reduced neutrophil migration into the tissue compartment in response to fMLP and to a lesser degree, to IL-8. Antibody-coated microparticles demonstrated that protein kinase C δ inhibition down-regulated E-selectin and ICAM-1 but not VCAM-1 expression. With the use of a physiologically relevant in vitro model system, we demonstrate that protein kinase C δ plays an important role in the regulation of neutrophil adherence/migration during inflammation and identifies key steps regulated by protein kinase C δ in neutrophil-endothelial interactions.
Objective To evaluate outcomes with expectant management of preterm prelabor rupture of membranes (PROM) until 35 weeks versus immediate delivery at ≥34 weeks. Study Design This was a multicenter retrospective cohort study of singletons with preterm PROM at >20 weeks from 2011 through 2017. Groups were defined as expectant management until 35 weeks versus immediate delivery at ≥34 weeks. Primary outcome was composite neonatal morbidity: need for respiratory support, culture positive neonatal sepsis, or antibiotic administration for >72 hours. Univariate and general estimating equation models were used with p < 0.05 considered significant. Results A total of 280 mother–infant dyads were included. There was no difference in composite neonatal outcome in pregnancies managed with expectant management compared with immediate delivery (43.4 vs. 37.5%; p = 0.32). Those with expectant management had shorter length of neonatal intensive care unit (NICU) admission but higher rates of neonatal antibiotics for > 72 hours, endometritis, and histological chorioamnionitis. There were no cases of fetal demise, neonatal death, or maternal sepsis, and only three cases of neonatal sepsis. Conclusion There is no difference in composite neonatal morbidity in pregnancies with preterm PROM managed with expectant management until 35 weeks as compared with immediate delivery at 34 weeks. Expectant management is associated with a decreased length of NICU admission but increased short-term infectious morbidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.