Chlorine photolysis is an advanced oxidation process which relies on photolytic cleavage of free available chlorine (i.e., hypochlorous acid and hypochlorite) to generate hydroxyl radical, along with ozone and a suite of halogen radicals. Little is known about the impact of wavelength on reactive oxidant generation even though chlorine absorbs light within the solar spectrum. This study investigates the formation of reactive oxidants during chlorine photolysis as a function of pH (6−10) and irradiation wavelength (254, 311, and 365 nm) using a combination of reactive oxidant quantification with validated probe compounds and kinetic modeling. Observed chlorine loss rate constants increase with pH during irradiation at high wavelengths due to the higher molar absorptivity of hypochlorite (pK a = 7.5), while there is no change at 254 nm. Hydroxyl radical and chlorine radical steady-state concentrations are greatest under acidic conditions for all tested wavelengths and are highest using 254 and 311 nm irradiation. Ozone generation is observed under all conditions, with maximum cumulative concentrations at pH 8 for 311 and 365 nm. A comprehensive kinetic model generally predicts the trends in chlorine loss and oxidant concentrations, but a comparison of previously published kinetic models reveals the challenges of modeling this complex system.
The multiple reactive oxidants produced during chlorine photolysis effectively degrade organic contaminants during water treatment, but their role in disinfection byproduct (DBP) formation is unclear. The impact of chlorine photolysis on dissolved organic matter (DOM) composition and DBP formation is investigated using lake water collected after coagulation, flocculation, and filtration at pH 6.5 and pH 8.5 with irradiation at three wavelengths (254, 311, and 365 nm). The steady-state concentrations of hydroxyl radical and chlorine radical decrease by 38–100% in drinking water compared to ultrapure water, which is primarily attributed to radical scavenging by natural water constituents. Chlorine photolysis transforms DOM through multiple mechanisms to produce DOM that is more aliphatic in nature and contains novel high molecular weight chlorinated DBPs that are detected via high-resolution mass spectrometry. Quenching experiments demonstrate that reactive chlorine species are partially responsible for the formation of halogenated DOM, haloacetic acids, and haloacetonitriles, whereas trihalomethane formation decreases during chlorine photolysis. Furthermore, DOM transformation primarily due to direct photolysis alters DOM such that it is more reactive with chlorine, which also contributes to enhanced formation of novel DBPs during chlorine photolysis.
This research investigated chlorinated byproduct formation at Ti4O7 anodes. Resorcinol was used as a model organic compound representative of reactive phenolic groups in natural organic matter and industrial phenolic contaminants and was oxidized in the presence of NaCl (05 mM). Resorcinol mineralization was >68% in the presence and absence of NaCl at 3.1 V/SHE (residence time = 13 s). Results indicated that ∼4.3% of the initial chloride was converted to inorganic byproducts (free Cl2, ClO2 –, ClO3 –) in the absence of resorcinol, and this value decreased to <0.8% in the presence of resorcinol. Perchlorate formation rates from chlorate oxidation were 115371 mol m–2 h–1, approximately two orders of magnitude lower than reported values for boron-doped diamond anodes. Liquid chromatography–mass spectroscopy detected two chlorinated organic products. Multichlorinated alcohol compounds (C3H2Cl4O and C3H4Cl4O) at 2.5 V/SHE and a monochlorinated phenolic compound (C8H7O4Cl) at 3.1 V/SHE were proposed as possible structures. Density functional theory calculations estimated that the proposed alcohol products were resistant to direct oxidation at 2.5 V/SHE, and the C8H7O4Cl compound was likely a transient intermediate. Chlorinated byproducts should be carefully monitored during electrochemical advanced oxidation processes, and multibarrier treatment approaches are likely necessary to prevent halogenated byproducts in the treated water.
Chlorine photolysis is an advanced oxidation process that relies on the combination of direct chlorination by free available chlorine, direct photolysis, and reactive oxidants to transform contaminants. In waters that contain bromide, free available bromine and reactive bromine species can also form. However, little is known about the underlying mechanisms or formation potential of disinfection byproducts (DBPs) under these conditions. We investigated reactive oxidant generation and DBP formation under dark conditions, chlorine photolysis, and radicalquenched chorine photolysis with variable chlorine (0−10 mg-Cl 2 / L) and bromide (0−2,000 μg/L) concentrations, as well as with free available bromine. Probe loss rates and ozone concentrations increase with chlorine concentration and are minimally impacted by bromide. Radical-mediated processes partially contribute to the formation targeted DBPs (i.e., trihalomethanes, haloacetic acids, haloacetonitriles, chlorate, and bromate), which increase with increasing chlorine concentration. Chlorinated novel DBPs detected by high-resolution mass spectrometry are attributable to a combination of dark chlorination, direct halogenation by reactive chlorine species, and transformation of precursors, whereas novel brominated DBPs are primarily attributable to dark bromination of electron-rich formulas. The formation of targeted and novel DBPs during chlorine photolysis in waters with elevated bromide may limit treatment applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.