Purpose: Cancer treatment is limited by inaccurate predictors of patient-specific therapeutic response. Therefore, some patients are exposed to unnecessary side effects and delays in starting effective therapy. A clinical tool that predicts treatment sensitivity for individual patients is needed. Experimental Design: Patient-derived cancer organoids were derived across multiple histologies. The histologic characteristics, mutation profile, clonal structure, and response to chemotherapy and radiation were assessed using bright-field and optical metabolic imaging on spheroid and single-cell levels, respectively. Results: We demonstrate that patient-derived cancer organoids represent the cancers from which they were derived, including key histologic and molecular features. These cultures were generated from numerous cancers, various biopsy sample types, and in different clinical settings. Next-generation sequencing reveals the presence of subclonal populations within the organoid cultures. These cultures allow for the detection of clonal heterogeneity with a greater sensitivity than bulk tumor sequencing. Optical metabolic imaging of these organoids provides cell-level quantification of treatment response and tumor heterogeneity allowing for resolution of therapeutic differences between patient samples. Using this technology, we prospectively predict treatment response for a patient with metastatic colorectal cancer. Conclusions: These studies add to the literature demonstrating feasibility to grow clinical patient-derived organotypic cultures for treatment effectiveness testing. Together, these culture methods and response assessment techniques hold great promise to predict treatment sensitivity for patients with cancer undergoing chemotherapy and/or radiation.
Human colorectal cancers are known to possess multiple mutations, though how these mutations interact in tumor development and progression has not been fully investigated. We have previously described the FCPIK3ca* murine colon cancer model which expresses a constitutively activated phosphoinositide-3 kinase (PI3K) in the intestinal epithelium. The expression of this dominantly active form of PI3K results in hyperplasia and invasive mucinous adenocarcinomas. These cancers form via a non-canonical mechanism of tumor initiation that is mediated through activation of PI3K and not through aberrations in WNT signaling. Since the Adenomatous Polyposis Coli (APC) gene is mutated in the vast majority of human colon cancers and often occurs simultaneously with PIK3CA mutations, we sought to better understand the interaction between APC and PIK3CA mutations in the mammalian intestine. In this study, we have generated mice in which the expression of a constitutively active PI3K and the loss of APC occur simultaneously in the distal small intestine and colon. Here we demonstrate that expression of a dominant active PI3K synergizes with loss of APC activity resulting in a dramatic changes in tumor multiplicity, size, morphology, and invasiveness. Activation of the PI3K pathway is not able to directly activate WNT signaling through the nuclear localization of CTNNB1 (β-catenin) in the absence of aberrant WNT signaling. Alterations at the transcriptional level, including increased CCND1, may be the etiology of synergy between these activated pathways.
The normal colon epithelium is transformed into its neoplastic counterpart through a series of genetic alterations in driver genes including activating mutations in PIK3CA. Treatment often involves surgery followed by 5-fluorouracil (5-FU) based therapy, which has limited efficiency and serious side effects. We sought to determine whether fisetin, a dietary flavonoid, alone or in combination with 5-FU affected tumorigenesis in the mammalian intestine. We first determined the effect of fisetin, 5-FU or their combination on PIK3CA-mutant and PIK3CA wild-type colon cancer cells by assessing cell viability, colony formation, apoptosis and effects on PI3K/AKT/mTOR signaling. Treatment of PIK3CA-mutant cells with fisetin and 5-FU reduced the expression of PI3K, phosphorylation of AKT, mTOR, its target proteins, constituents of mTOR signaling complex and this treatment increased the phosphorylation of AMPKα. We then determined whether fisetin and 5-FU together or singly affected tumorigenesis in Apc Min/+ mice that also express constitutively active PI3K in the distal small intestine and colon. Tumor incidence was markedly lower in fisetin-treated FC 1 3K 1 Apc Min/+ mice that also express constitutively active PI3K in distal small intestine and colon, as compared to control animals, indicating that fisetin is a strong preventive agent. In addition, the combination of fisetin and 5-FU also reduced the total number of intestinal tumors. Fisetin could be used as a preventive agent plus an adjuvant with 5-FU for the treatment of PIK3CA-mutant colorectal cancer.
Introduction. Thrombotic thrombocytopenic purpura (TTP) is a rare, life-threatening thrombotic microangiopathy due to an acquired autoantibody to ADAMTS13 that requires a boutique treatment, urgent plasma exchange. Thus, TTP is often termed a “cannot miss” diagnosis. Case. We report a patient with TTP who had a history of immune thrombocytopenia (ITP), had atypical demographics for TTP, and had also met criteria for primary Sjogren’s syndrome. This exceedingly rare combination presented a temptation to dismiss TTP as a diagnosis. Discussion. Our case further demonstrates the practical utility of using the PLASMIC score as a tool that can help identify patients with TTP even when the patient has statistically rare characteristics.
Background Sarcomas are rare diagnoses but are seen with relative frequency in adolescents and young adults and thus can present in pregnancy. We sought to study the administration of anthracyclines and/or ifosfamide in pregnancy‐associated sarcomas. Patients and Methods We conducted a multi‐institutional retrospective study, identifying sarcoma patients who received anthracyclines and/or ifosfamide during pregnancy. Chart review identified variables related to demographics, cancer diagnosis, therapies, and outcome of the patient and fetus. Wilcoxon rank‐sum test compared two independent samples. Results We identified 13 patients at seven institutions with sarcoma who received anthracyclines and/or ifosfamide during pregnancy, including four bone sarcomas and nine soft tissue sarcomas diagnosed at a mean gestational age of 16.7 ± 5.9 weeks. Only nine patients had live births (9/13, 69.2%), with mean gestational age of 30.8 ± 3.8 weeks at delivery. The four patients with pregnancy loss all received both doxorubicin and ifosfamide, with chemotherapy initiated at 15.5 weeks as compared with 21.3 weeks for those patients with live births (p = 0.016). Conclusion In this multi‐institutional study of sarcoma chemotherapy regimens administered during pregnancy, we found a high rate of fetal demise that was seen only in patients receiving both doxorubicin and ifosfamide and statistically more likely with chemotherapy initiation earlier in the second trimester. While limited by a small sample size, our study represents the largest study of sarcoma patients that received anthracyclines and/or ifosfamide in pregnancy thus far reported and supports development of an international registry to study concerns raised by our study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.