Uniform drug delivery techniques are challenging to develop for the inner ear due to the complexity of the cochlear anatomy. A promising solution is the use of biodegradable polymers because the continuous release of therapeutics without introducing toxic compounds is desirable. Using a microneedle approach lends the polymeric microneedle the capability to be placed inside of the scala tympani, releasing drugs overtime. Poly(lactic-co-glycolic acid) (PLGA) microneedles is prepared by dissolving dimethyl sulfoxide with either a) Rhodamine B, to study the drug release profile in vitro, b) FM1-43, to study the drug release profile in vivo, or c) dexamethasone (DXM), to protect hair cell (HC) loss in vivo. The Rhodamine B studies show that the dye begins release from the microneedles within 30 min. The ototoxicity assessment of the DXM-coated microneedles in vitro shows a significant reduction of HC losses when compared to control microneedles in an ototoxic environment. In vivo data show reduced hearing threshold for animals treated with DXM-infused microneedles, providing a proof of concept of the methodology developed. Drug-infused polymeric microneedles provide a promising method to deliver DXM to the inner ear over controlled periods of time protecting hair cells, thus minimizing hearing loss (HL).
Zika virus (ZIKV) is an arbovirus that caused widespread panic beginning in 2015 in northeastern Brazil due to the threatening link between infection and fetal abnormalities such as microcephaly, spontaneous abortions, and stillbirths. Since the epidemic began, the virus has been further investigated, unveiling that the long-term dangers of ZIKV infection go beyond fetal neurological impairment. Characterization of the active infection has proven difficult as only 20% of infected individuals are symptomatic. Additionally, ZIKV is often misdiagnosed due to serological cross-reactivity with similar flaviviruses such as dengue, yellow fever, and West Nile. To date, there is no approved vaccine or therapy against ZIKV, highlighting the urgent need to accurately identify active infection to help minimize the spread of the virus. Herein, we describe a highly specific and sensitive enzyme-linked immunosorbent assay to detect early active ZIKV using neutralizing human monoclonal antibodies isolated from infected patients in Brazil that do not cross-react with dengue viruses 1–4 and bind directly to a ZIKV immunodominant epitope. The calculated limits of detection of active ZIKV fall within the physiological ranges of the virus in human bodily fluids. This selective immunoassay creates the platform required for future translation toward a point-of-care assay for ZIKV, a necessity to diagnose active ZIKV in the remote regions of which it thrives.
There is an unmet need for a point-of-care test that is accurate, affordable, and simple to diagnose bacterial vaginosis, the most common cause of vaginal symptoms among women. Bacterial vaginosis leaves patients with undesirable vaginal discharge, malodor, and discomfort. Currently, the diagnosis of bacterial vaginosis is inaccurate and complex, leading to high rates of misdiagnosis. Inaccurate diagnoses are unsafe as bacterial vaginosis increases the risks of acquiring sexually transmitted infections as well as the likelihood of miscarriages. To date, the most commonly identified bacteria associated with bacterial vaginosis is Gardnerella vaginalis. We developed a method for the expression, purification, and detection of vaginolysin, the most well-characterized virulence factor of G. vaginalis. Elevated levels of G. vaginalis have been shown to lead to a toxic vaginal environment, facilitating bacterial vaginosis. We have developed an enzyme-linked immunosorbent assay for the detection of vaginolysin, which was translated to a lateral flow assay for use in a rapid, straightforward, cost-effective paper-based diagnostic test for vaginolysin that does not require the use of instrumentation. In conjunction, we have employed a commercially available smartphone microscopy kit to visualize clue cells without the need for equipment or electricity. The combination of these methodologies allows for an accurate and easy approach to diagnose bacterial vaginosis with minimal resources for use in any setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.