A crystal plasticity finite element (CPFE) framework is proposed for modeling the non-Schmid yield behavior of L12 type Ni3Al crystals and Ni-based superalloys. This framework relies on the estimation of the non-Schmid model parameters directly from the orientation- and temperature-dependent experimental yield stress data. The inelastic deformation model for Ni3Al crystals is extended to the precipitate (γ′) phase of Ni-based superalloys in a homogenized dislocation density based crystal plasticity framework. The framework is used to simulate the orientation- and temperature-dependent yield of Ni3Al crystals and single crystal Ni-based superalloy, CMSX-4, in the temperature range 260–1304 K. Model predictions of the yield stress are in general agreement with experiments. Model predictions are also made regarding the tension–compression asymmetry and the dominant slip mechanism at yield over the standard stereographic triangle at various temperatures for both these materials. These predictions provide valuable insights regarding the underlying (orientation- and temperature-dependent) slip mechanisms at yield. In this regard, the non-Schmid model may also serve as a standalone analytical model for predicting the yield stress, the tension–compression asymmetry and the underlying slip mechanism at yield as a function of orientation and temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.