Abstract-Neovascularization is a hallmark feature of retinopathy of prematurity and diabetic retinopathy. Type 1 angiotensin receptor blockade reduces neovascularization in experimental retinopathy of prematurity, known as oxygen-induced retinopathy (OIR). We investigated in OIR whether inhibiting aldosterone with the aldosterone synthase inhibitor FAD286 reduced neovascularization as effectively as angiotensin receptor blockade (valsartan). OIR was induced in neonatal Sprague-Dawley rats, and they were treated with FAD286 (30 mg/kg per day), valsartan (10 mg/kg per day), or FAD286ϩvalsartan. The cellular sources of aldosterone synthase, the mineralocorticoid receptor, and 11-hydroxysteroid dehydrogenase 2 were evaluated in retinal cells involved in neovascularization (primary endothelial cells, pericytes, microglia, ganglion cells, and glia). In OIR, FAD286 reduced neovascularization and neovascular tufts by 89% and 67%, respectively, and normalized the increase in vascular endothelial growth factor mRNA (1.74-fold) and protein (4.74-fold) and was as effective as valsartan and FAD286ϩvalsartan. In retina, aldosterone synthase mRNA was reduced with FAD286 but not valsartan. Aldosterone synthase was detected in microglia, ganglion cells, and glia, whereas mineralocorticoid receptor and 11-hydroxysteroid dehydrogenase 2 were present in all of the cell types studied. Given the location of aldosterone synthase in microglia and their contribution to retinal inflammation and neovascularization in OIR, the effects of FAD286 on microglial density were studied. The increase in microglial density (ionized calcium binding adaptor protein 1 immunolabeling) in OIR was reduced with all of the treatments. In OIR, FAD286 reduced the increase in mRNA for tumor necrosis factor-␣, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, and monocyte chemoattractant molecule 1. These findings indicate that aldosterone inhibition may be a potential treatment for retinal neovascularization.
Activation-induced cell death (AICD) plays a critical role in immune homeostasis and tolerance. In T-cell-dependent humoral responses, AICD of B cells is initiated by Fas ligand (FasL) on T cells, stimulating the Fas receptor on B cells. In contrast, T-cell-independent B cell responses involve innate-type B lymphocytes, such as marginal zone (MZ) B cells, and little is known about the mechanisms that control AICD during innate B cell responses to Toll-like receptor (TLR) activation. Here, we show that MZ B cells undergo AICD in response to TLR4 activation in vivo. The transmembrane activator, calcium modulator, and cyclophilin ligand interactor (TACI) receptor and TLR4 cooperate to upregulate expression of both FasL and Fas on MZ B cells and also to repress inhibitors of Fas-induced apoptosis signaling. These findings demonstrate an unappreciated role for TACI and its ligands in the regulation of AICD during T-cell-independent B cell responses.
Neovascular retinopathies are major causes of vision loss; yet treatments to prevent the condition are inadequate. The role of regulatory T cells in neovascular retinopathy is unknown. Here we show that in retinopathy regulatory T cells are transiently increased in lymphoid organs and the retina, but decline when neovascularization is established. The decline is prevented following regulatory T cells expansion with an IL-2/anti-IL-2 mAb complex or the adoptive transfer of regulatory T cells. Further, both approaches reduce vasculopathy (vaso-obliteration, neovascularization, vascular leakage) and alter the activation of Tmem119+ retinal microglia. Our in vitro studies complement these findings, showing that retinal microglia co-cultured with regulatory T cells exhibit a reduction in co-stimulatory molecules and pro-inflammatory mediators that is attenuated by CTLA-4 blockade. Collectively, we demonstrate that regulatory T cells are recruited to the retina and, when expanded in number, repair the vasculature. Manipulation of regulatory T cell numbers is a previously unrecognized, and promising avenue for therapies to prevent blinding neovascular retinopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.