In vivo antidotal efficacy of new bis- quaternary 2-(hydroxyimino)- N-(pyridin-3yl) acetamide derivatives (HNK series), to counter multiples of lethal doses of nerve agent sarin (GB) and reactivation of acetylcholinesterase (AChE), was evaluated in Swiss albino mice. [Protection index PI; median lethal dose (LD50) of sarin with treatment/LD50 of sarin] was estimated, using 0.05, 0.10, and 0.20 LD50 as treatment doses of all the oximes with atropine against sarin poisoning. Dose-dependent time course study was conducted at 0.2, 0.4 and 0.8 LD50 dose of sarin for estimating maximum AChE inhibition. At optimized time (15 min), in vivo enzyme half inhibition concentration (IC50) was calculated. AChE reactivation efficacy of HNK series and pralidoxime (2-PAM) were determined by plotting shift of log IC50 doses. HNK-102 with atropine showed three fold higher PI compared to 2-PAM. In vivo IC50 of sarin for brain and serum AChE was found to be 0.87 LD50 (139.2 µg/kg) and 0.48 LD50 (77.23 µg/kg), respectively. Treatment with HNK-102 and HNK-111 (equal to their 0.20LD50) significantly reactivated sarin-intoxicated AChE ( p < 0.05) at 2× IC50 dose of sarin, compared to 2-PAM. The study revealed that HNK-102 oxime was three times more potent as antidote, for acute sarin poisoning compared to 2-PAM in vivo.
Having established the antidotal efficacy of 2-(hydroxyimino)-N-(pyridin-3-yl)acetamide (HNK oximes) against Diisopropylphosphorofluoridate (DFP) and sarin poisoning. Toxicity of HNK series and 2-PAM oximes on Human cell lines and Swiss male mice i.e. in vitro and in vivo to reported. Toxicity of the oximes was investigated in Hela, Hep G2 and HEK 293 cell lines and compared with most commonly used 2-PAM. Median lethal doses (LD50) of the oximes (2-PAM, HNK-102, HNK-106, and HNK-111) were also determined following intramuscular, intraperitoneal, intravenous and oral routes of administration. All tested oximes showed no cytotoxic effect on all three cell lines in concentrations up to 0.05 mg/mL. At higher dose (0.5 mg/mL), HNK-102 found to be less toxic thus safer than 2-PAM and other oximes in all the three cell lines. In corroboration with in vitro finding, HNK-102 was found to be least toxic compared to other oximes via intra-peritoneal and intravenous routes of administration. Also, HNK-102 was found to be unequivocally safer compared to that of 2-PAM through i.m. and i.p. routes. For all tested oximes, toxicity following oral route, was found to be lower compared to injections, signifying that these are safer and convenient compounds for administration. These finding also suggested that HNK-102 is safer and better lead as an antidote compared to 2-PAM, against OP intoxicants.
The study reports antidotal efficacy of three HNK [ bis quaternary 2-(hydroxyimino)-N-(pyridin-3yl) acetamide derivatives] and pralidoxime (2-PAM), against soman and tabun poisoning in Swiss albino mice. Protection index (PI) was determined (treatment doses: HNK oximes, ×0.20 of their median lethal dose (LD50) and 2-PAM, 30 mg/kg, intramuscularly (im)) together with atropine (10 mg/kg, intraperitoneally). Probit log doses with difference of 0.301 log of LD50 of the nerve agents administered and inhibition of acetylcholinesterase (AChE) activity by 50% (IC50) was calculated at optimized time in brain and serum. Using various doses of tabun and soman (subcutaneously (sc)), in multiples of their IC50, AChE reactivation ability of the oximes was studied. Besides, acute toxicity (0.8× LD50, im, 24 h postexposure) of HNK-102 and 2-PAM was also compared by determining biochemical, hematological variables and making histopathological observations. Protection offered by HNK-102 against tabun poisoning was found to be four times higher compared to 2-PAM. However, nearly equal protection was noted with all the four oximes against soman poisoning. HNK-102 reactivated brain AChE activity by 1.5 times more than 2-PAM at IC50 dose of soman and tabun. Acute toxicity studies of HNK-102 and 2-PAM showed sporadic changes in urea, uric acid, aspartate aminotransferase, and so on compared to control group, however, not supported by histopathological investigations. The present investigation showed superiority of newly synthesized HNK-102 oxime over standard 2-PAM, as a better antidote, against acute poisoning of tabun (4.00 times) and soman (1.04 times), in Swiss albino mice.
The available antidotal therapy against acute poisoning by organophosphates involves the use of atropine alone or in combination with one of the oximes, e.g. 2-PAM, Obidoxime, TMB-4 or HI-6. Each of these oximes has some limitation, raising the question of the universal antidotal efficacy against poisoning by all OPs/nerve agents. In the present study, newly synthesized bis quaternary 2-(hydroxyimino)-N-(pyridin-3yl) acetamide derivatives (HNK-series) oximes were evaluated for their antidotal efficacy against DDVP intoxicated Swiss mice, in terms of the Protection Index (PI) and AChE reactivation in brain and serum. The inhibition concentration (IC50) was determined in brain and serum after optimizing the time point for maximum inhibition (60 min post DDVP exposure). AChE reactivation efficacy of the HNK series was evaluated at IC50 and compared with 2-PAM. HNK-102 showed a ~2 times better Protection Index (PI) as compared to 2-PAM against DDVP toxicity. IC50 at 60 min DDVP post exposure was found to be approximately one fifth and one half of the LD50 dose for brain and serum AChE, respectively. Out of three HNK oximes, HNK-102 & 106 at 0.20 LD50 dose significantly reactivated DDVP intoxicated brain AChE (p<0.05) as compared to 2-PAM at double IC50 dose of DDVP. In light of double PI and higher AChE reactivation, HNK 102 was found to be a better oxime than 2-PAM in the treatment of acute poisoning by DDVP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.