Using light-sheet microscopy combined with digital Fourier methods we probe the dynamics of colloidal samples and DNA molecules. This combination, referred to as selective-plane illumination differential dynamic microscopy (SPIDDM), has the benefit of optical sectioning to study, with minimal photobleaching, thick samples allowing us to measure the diffusivity of colloidal particles at high volume fractions. Further, SPIDDM exploits the inherent spatially-varying thickness of Gaussian light-sheets. Where the excitation sheet is most focused, we capture high spatial frequency dynamics as the signal-to-background is high. In thicker regions, we capture the slower dynamics as diffusion out of the sheet takes longer.
We combine single-molecule conformational tracking with digital Fourier microscopy to couple crowding-induced conformations and trajectories of single molecules with ensemble-averaged transport properties across an unprecedented spatiotemporal range to elucidate the complex dynamics of large DNA crowded by custom-designed networks of actin and microtubules.
Cytoskeletal crowding plays a key role in the diffusion of DNA molecules through the cell, acting as a barrier to effective intracellular transport and conformational stability required for such processes as transfection, viral infection, and gene therapy. Here we elucidate the transport properties and conformational dynamics of linear and ring DNA molecules diffusing through entangled and crosslinked composite networks of actin and microtubules. We couple single-molecule conformational tracking with differential dynamic microscopy to reveal that ring and linear DNA exhibit surprisingly distinct transport properties that are influenced differently by cytoskeleton crosslinking. Ring DNA coils are swollen and undergo heterogeneous and biphasic subdiffusion that is hindered by crosslinking. Conversely, crosslinking actually facilitates the single-mode subdiffusion that compacted linear chains exhibit. Our collective results demonstrate that transient threading by cytoskeleton filaments plays a key role in the dynamics of ring DNA, whereas the mobility of the cytoskeleton dictates transport of linear DNA.
Crowding plays a key role in the transport and conformations of biological macromolecules. Gene therapy, viral infection and transfection require DNA to traverse the crowded cytoplasm, including a heterogeneous cytoskeleton of filamentous proteins. Given the complexity of cellular crowding, the dynamics of biological molecules can be highly dependent on the spatiotemporal scale probed. We present a powerful platform that spans molecular and cellular scales by coupling single-molecule conformational tracking (SMCT) and selective-plane illumination differential dynamic microscopy (SPIDDM). We elucidate the transport and conformational properties of large DNA, crowded by custom-designed networks of actin and microtubules, to link single-molecule conformations with ensemble DNA transport and cytoskeleton structure. We show that actin crowding leads to DNA compaction and suppression of fluctuations, combined with anomalous subdiffusion and heterogeneous transport, whereas microtubules have much more subdued impact across all scales. Interestingly, in composite networks of both filaments, microtubules primarily govern singlemolecule DNA dynamics whereas actin governs ensemble transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.