<p>The infection caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) resulted in a pandemic with huge death toll and economic consequences. The virus attaches itself to the human epithelial cells through noncovalent bonding of its spike protein with the angiotensin-converting enzyme-2 (ACE2) receptor on the host cell. We hypothesized that perturbing the functionally active conformation of spike protein through reduction of its solvent accessible disulfide bond, thereby disintegrating its structural architecture, may be a feasible strategy to prevent infection. Proteomics data showed that N-acetyl cysteine (NAC), an antioxidant and mucolytic agent been widely in use in clinical medicine, forms covalent conjugates with solvent accessible cysteine residues of spike protein that were disulfide bonded in the native state. <i>In silico </i>analysis<i> </i>indicated that this covalent conjugation perturbed the stereo specific orientations of the interacting key residues of spike protein that resulted in threefold weakening in the binding affinity of spike protein with ACE2 receptor. Antiviral assay using VeroE6 cells showed that NAC caused 54.3% inhibition in SARS-CoV-2 replication. Interestingly, almost all SARS-Cov-2 variants conserved cystine residues in the spike protein. Our observed results open avenues for exploring <i>in vivo </i>pharmaco-preventive and therapeutic potential of NAC for Coronavirus Disease 2019 (COVID-19).</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.