Expression of Bmi-1 in gallbladder carcinoma and its clinicopathology and mechanisms of regulation of human gallbladder carcinoma cell proliferation were investigated. Fifty cases of gallbladder carcinoma specimens and 15 normal gallbladder tissues were subjected to immunohistochemical staining to detect the expression of Bmi-1 gene in gallbladder carcinoma and normal gallbladder tissues. Clinicopathological features were compared and analyzed. Bmi1-si RNA and Bmi1-NC vectors were transfected into GBC-SD gallbladder cancer cell lines. Expression of Bmi-1 in GBC-SD-Bmi1-si RNA, GBC-SD-Bmi1-NC and GBC-SD cells was detected by RT-qPCR. Cell proliferation was detected by CCK-8 assay. Flow cytometry was used to detect cell apoptosis. Protein expression was detected by western blot analysis. The positive expression rate of Bmi-1 protein in gallbladder carcinoma tissues was significantly higher than that in normal gallbladder tissues (P<0.05). Expression of Bmi-1 protein in gallbladder carcinoma was correlated with tumor differentiation and stage (P<0.05). Expression level of Bmi-1 in GBC-SD-Bmi1-si RNA was significantly lower than that in GBC-SD-Bmi1-NC and GBC-SD cells. The apoptosis rate of GBC-SD-Bmi1-si RNA cells was significantly higher than that of the two control groups. Compared with the control groups, the expression of anti-apoptotic protein Bcl-2 in GBC-SD-Bmi1-si RNA cells decreased, while the expression of proapoptotic protein Bax and caspase 3 increased, and the expression levels of cyclin D1 and CDK2 decreased. Positive expression rate of Bmi-1 protein in gallbladder carcinoma tissues was significantly higher than that in normal gallbladder tissue. Following inhibition of the expression of Bmi-1 in gallbladder cancer cell line GBC-SD, the growth cycle of cancer cells was prolonged and apoptotic rate increased. The results showed that a decreased expression of cyclin D1 and CDK2 may lead to delayed cell proliferation, decreased expression of anti-apoptotic protein Bcl-2, increased expression of pro-apoptotic protein Bax and caspase 3, leading to increased apoptosis.
The incidence of obesity and type 2 diabetes mellitus (T2dM) is increasing year by year and shows a trend towards younger age groups worldwide. it has become a disease that endangers the health of individuals all over the world. among numerous weight loss surgeries, sleeve gastrectomy (SG) has become one of the most common surgical strategies for the treatment of T2dM. However, SG-mediated alterations to the molecular mechanism of metabolism require further investigation. Thus, reverse transcription-quantitative Pcr was used to detect the expression levels of long non-coding (lnc)rna taurine-upregulated gene 1 (TuG1), Sirtuin 1 (SirT1), aMP-activated protein kinase (aMPK) and uncoupling protein 2 (ucP2) in the serum of T2dM patients, as well as in Hiec-6 and SW480 cells following treatment with high glucose and high fat (HGHF). Protein expression was detected by western blotting. cell counting Kit-8 assays were performed to analyze cell viability, and flow cytometry and a Tunel assay was performed to evaluate cell apoptosis. The secretion of ils in the culture medium was detected by conducting eliSas. The results showed that lncrna TuG1 and ucP2 expression was upregulated, SirT1 and aMPK expression levels were decreased by SG. under HGHF conditions, Hiec-6 and SW480 cell viability was inhibited, apoptosis was promoted, TuG1 expression was downregulated, and SirT1 and aMPK expression levels were upregulated. The secretory levels of il-1β, il-6 and il-8 were increased, whereas the secretion of il-10 was decreased under HGHF conditions. lncRNA TUG1 overexpression significantly reversed the effects of HGHF on cell viability, apoptosis and SirT1, aMPK, ucP2 and Bcl-2 expression levels. Together, the findings of the present study demonstrated that lncRNA TuG1 alleviated the damage induced by HGHF in intestinal epithelial cells by downregulating SirT1 and aMPK expression, and upregulating ucP2 expression. Thus, the lncrna TuG1/aMPK/SirT1/ucP2 axis may serve an important role in the treatment of T2dM.
Background:Due to its remarkable effect in controlling glycometabolism, relatively simple operation, and low risk of complications, sleeve gastrectomy (SG) has become the preferred surgical treatment for type II diabetes mellitus. Increased blood glucose in the body can cause damage to functional cells. Material/Methods:Long non-coding RNA SNHG5 expression and TGR5 in serum were analyzed by real-time PCR. A diabetic cell model was established by culturing normal human intestinal epithelial cells NCM460 and DLD-1 with high-glucose and high-fat medium. CCK-8 assay, TUNEL assay, and flow cytometry were used to assess cell growth and apoptosis, respectively. The secretion of lactate dehydrogenase (LDH) was detected using the LDH Cytotoxicity Kit. lncRNA SNHG5 was downregulated by siRNA. The changes in expression of SNHG5, TGR5, Akt, p65, and Bcl-2 were analyzed by real-time PCR assay or Western blot. Results:In 40 type II diabetes patients who underwent sleeve gastrectomy, the expression of SNHG5 decreased and the expression of TGR5 increased compared with that before the operation. After high-glucose and high-fat culture, cell growth was inhibited and cell apoptosis increased significantly. The expression of SNHG5 was increased and TGR5 was decreased with high-glucose and high-fat culture. However, high glucose and high fat showed an opposite trend for cell growth, apoptosis, and LDH release under inhibition of SNHG5. The expression levels of TGR5 and Akt, p65, and Bcl-2 were also returned to normal by SNHG5 inhibition. Conclusions:By downregulating expression of the SNHG5 gene and then altering expression of the TGR5 gene, the damage to colorectal cells induced by high glucose was alleviated. This may be one of the mechanisms underlying the effect of sleeve gastric surgery in treatment of diabetes mellitus.
Background: Although the prognosis of thyroid cancer (THCA) is generally good, many patients have a high risk of recurrence after treatment. N6-methyladenosine (m6A)-related long noncoding RNAs (lncRNAs) have been extensively studied in recent years. However, the potential of m6A-related lncRNAs to predict recurrence in THCA is unknown.Methods: RNA sequencing (RNA-seq) data and clinical information for THCA were downloaded fromThe Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs (DELs) were identified using the R package DESeq2. A coexpression network based on m6A-related genes and lncRNAs was constructed. The CIBERSORT algorithm and gene set enrichment analysis (GSEA) were used for immune-infiltrating cell estimation and clustering functional enrichment analysis, respectively. A Kaplan-Meier plot was used for prognostic analysis based on m6A-associated lncRNA risk patterns. The expression of lncRNAs in recurrent and nonrecurrent THCA tissues was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR).Results: A network of m6A-related lncRNAs containing 8 lncRNAs was constructed with good predictive power for recurrence in THCA. A total of 3 clusters were obtained, and cluster 1 was most associated with THCA recurrence. We found significantly lower levels of CD8 T cells and follicular helper T cells, and significantly higher levels of dendritic cells (DCs), M2 macrophages, resting DCs, regulatory T cells, and mast cells in cluster 1 patients. Pathway analysis revealed significant enrichment in natural killer cellmediated cytotoxicity, butyrate metabolism, and cell adhesion molecules in cluster 1. The m6A-related lncRNA risk model was effective in predicting progression-free survival (PFS) in patients with THCA recurrence. RT-qPCR analysis based on 40 THCA clinical samples from our center found the risk model to be a good predictor of recurrence in THCA patients.Conclusions: In summary, m6A-related lncRNAs may provide a novel predictive method for prognostic relapse in THCA patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.