Information about spawning migration and spawning habitat is essential to maintain and ultimately restore populations of endangered and threatened species of anadromous fish. We used ultrasonic and radiotelemetry to monitor the movements of 35 adult Gulf sturgeon Acipenser oxyrinchus desotoi (a subspecies of the Atlantic sturgeon A. oxyrinchus) as they moved between Choctawhatchee Bay and the Choctawhatchee River system during the spring of 1996 and 1997. Histological analysis of gonadal biopsies was used to determine the sex and reproductive status of individuals. Telemetry results and egg sampling were used to identify Gulf sturgeon spawning sites and to examine the roles that sex and reproductive status play in migratory behavior. Fertilized Gulf sturgeon eggs were collected in six locations in both the upper Choctawhatchee and Pea rivers. Hard bottom substrate, steep banks, and relatively high flows characterized collection sites. Ripe Gulf sturgeon occupied these spawning areas from late March through early May, which included the interval when Gulf sturgeon eggs were collected. For both sexes, ripe fish entered the Choctawhatchee River significantly earlier and at a lower water temperature and migrated further upstream than did nonripe fish. Males entered the Choctawhatchee River at a lower water temperature than females. Results from histology and telemetry support the hypothesis that male Gulf sturgeon may spawn annually, whereas females require more than 1 year between spawning events. Upper river hard bottom areas appear important for the successful spawning of Gulf sturgeon, and care should be taken to protect against habitat loss or degradation of known spawning habitat.
Globally, population declines for the sand tiger shark (Carcharias taurus) have resulted in calls for informed management of populations, including in the western North Atlantic, where they have been listed as a Species of Concern by NOAA Fisheries. However, information on movements and habitat use, critical for informed management of this sand tiger population, is limited. We investigated horizontal and vertical movements of sand tigers along the US east coast using pop-up archival satellite transmitters, supplemented by acoustic telemetry. Thirteen sand tiger sharks were tagged with satellite and acoustic transmitters in Delaware Bay in late August and early September 2008. Ten of these provided satellite data for horizontal tracks using a Kalman filter. Males left Delaware Bay in autumn and moved south along the continental shelf until reaching waters off North Carolina. Females moved east to waters near the edge of the continental slope. Average depth of males was positively correlated with shark size. All individuals spent at least 95% of their time in waters of 17–23°C. Sand tiger sharks appear most susceptible to fisheries in November and December. Slight expansion of the boundaries and timing of an existing shark-directed bottom longline area closure would likely reduce by-catch of sand tiger sharks and enhance recovery of the stock.
Multibeam imaging sonars have considerable potential for use in fisheries surveys because the video-like images are easy to interpret, and they contain information about fish size, shape, and swimming behavior, as well as characteristics of occupied habitats. We examined images obtained using a dual-frequency identification sonar (DIDSON) multibeam sonar for Atlantic sturgeon Acipenser oxyrinchus oxyrinchus, striped bass Morone saxatilis, white perch M. americana, and channel catfish Ictalurus punctatus of known size (20–141 cm) to determine the reliability of length estimates. For ranges up to 11 m, percent measurement error (sonar estimate – total length)/total length × 100 varied by species but was not related to the fish's range or aspect angle (orientation relative to the sonar beam). Least-square mean percent error was significantly different from 0.0 for Atlantic sturgeon (x̄ = −8.34, SE = 2.39) and white perch (x̄ = 14.48, SE = 3.99) but not striped bass (x̄ = 3.71, SE = 2.58) or channel catfish (x̄ = 3.97, SE = 5.16). Underestimating lengths of Atlantic sturgeon may be due to difficulty in detecting the snout or the longer dorsal lobe of the heterocercal tail. White perch was the smallest species tested, and it had the largest percent measurement errors (both positive and negative) and the lowest percentage of images classified as good or acceptable. Automated length estimates for the four species using Echoview software varied with position in the view-field. Estimates tended to be low at more extreme azimuthal angles (fish's angle off-axis within the view-field), but mean and maximum estimates were highly correlated with total length. Software estimates also were biased by fish images partially outside the view-field and when acoustic crosstalk occurred (when a fish perpendicular to the sonar and at relatively close range is detected in the side lobes of adjacent beams). These sources of bias are apparent when files are processed manually and can be filtered out when producing automated software estimates. Multibeam sonar estimates of fish size should be useful for research and management if these potential sources of bias and imprecision are addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.