Dipeptyl peptidase-4 (DPP-4) inhibitors modulate the progression of atherosclerosis. To gain insights into their mechanism of action, 9-wk-old male apolipoprotein E (apoE)-deficient mice were fed a DPP-4 inhibitor, anagliptin-containing diet. The effects of anagliptin were investigated in, a monocyte cell line, human THP-1 cells, and rat smooth muscle cells (SMCs). Treatment with anagliptin for 16 wk significantly reduced accumulation of monocytes and macrophages in the vascular wall, SMC content in plaque areas, and oil red O-stained area around the aortic valve without affecting glucose tolerance or body weight. Serum DPP-4 concentrations were significantly higher in apoE-deficient mice than control mice, and the levels increased with aging, suggesting the involvement of DPP-4 in the progression of atherosclerosis. Indeed, soluble DPP-4 augmented cultured SMC proliferation, and anagliptin suppressed the proliferation by inhibiting ERK phosphorylation. In THP-1 cells, anagliptin reduced lipopolysaccharide-induced TNF-α production with inhibiting ERK phosphorylation and nuclear translocation of nuclear factor-κB. Quantitative analysis also showed that anagliptin reduced the area of atherosclerotic lesion in apoE-deficient mice. These results indicated that the anti-atherosclerotic effect of anagliptin is mediated, at least in part, through its direct inhibition of SMC proliferation and inflammatory reaction of monocytes.
BackgroundDengue virus (DENV) infection is a major cause of acute febrile illness in Indonesia. Diagnostic inaccuracy may occur due to its varied and non-specific presentation. Characterization of DENV epidemiology, clinical presentation, and virology will facilitate appropriate clinical management and public health policy.Methodology/Principal findingsA multicenter observational cohort study was conducted in Indonesia to assess causes of acute fever requiring hospitalization. Clinical information and specimens were collected at enrollment, 14–28 days, and 3 months from 1,486 children and adults. Total of 468 (31.9%) cases of DENV infection were confirmed by reference laboratory assays. Of these, 414 (88.5%) were accurately diagnosed and 54 had been misdiagnosed as another infection by sites. One hundred initially suspected dengue cases were finally classified as ‘non-dengue’; other pathogens were identified in 58 of those cases. Mortality of DENV infection was low (0.6%). Prior DENV exposure was found in 92.3% of subjects >12 years. DENV circulated year-round in all cities, with higher incidence from January to March. DENV-3 and DENV-1 were the predominant serotypes. This study identified DENV-1 with TS119(C→T) substitution in the serotyping primer annealing site, leading to failure of serotype determination.Conclusions/SignificanceDENV is a common etiology of acute febrile illness requiring hospitalization in Indonesia. Diagnostic accuracy at clinical sites merits optimization since misdiagnosis of DENV infection and over-estimation of dengue can negatively impact management and outcomes. Mutation at the annealing site of the serotyping primer may confound diagnosis. Clinicians should consider following diagnostic algorithms that include DENV confirmatory testing. Policy-makers should prioritize development of laboratory capacity for diagnosis of DENV.
Introduction: Hyperglycemia in diabetic patients induces elevated pro-inflammatory cytokine production, resulting in cellular damage, which may affect the regenerative function of mesenchymal stem cells (MSCs), such as adipose-derived stem cells (ADSCs). Identifying the effect of diabetes on ADSCs and optimization of culture conditions is therefore an important starting point for the application of autologous stem cells to improve clinicial outcomes. The aim of this study was to investigate the effect of diabetes on ADSCs that cultured in low-glucose anti-oxidant-serum supplemented medium. Methods: In this study, freshly isolated stromal vascular fraction (SVF) and expanded ADSCs were compared between diabetic and non-diabetic donors. SVF were isolated from the abdominal fat, and total viable cells and viability were estimated. Fresh SVF were cultured in low-glucose (100 mg/dL) culture medium supplemented with an anti-oxidant and fetal bovine serum (complete culture medium) at a low density for 14 days for the colony formation unit-fibroblast (CFU-F) assay. The remaining SVF were expanded to obtain ADSCs in the complete culture medium, which were evaluated based on MSCs surface marker expression and three lineage differentiation potential. Diabetic and non-diabetic ADSCs were compared with respect to population doubling time and viability after serial passage. Results: Total viable counts (0.97 +/- 0.39 x 109 cells/10 mL of adipose tissue, 0.56 +/- 0.39 x 109 cells/10 mL of adipose tissue, p=0.02, independent t-test), but not viability (98.63 +/- 1.12%, 98.20 +/- 1.21%, p= 0.38, independent t-test), were significantly higher for SVF cells from adipose tissues of non-diabetic donors than diabetic donors. Fewer CFU-F were obtained from cultured diabetic SVF than from non-diabetic SVF. Diabetic and non-diabetic ADSCs had similar differentiation potency and CD73 (99.44 +/- 0.34%, 97.15 +/- 5.37%, p= 0.21, Mann-Whitney U test) and CD90 (97.30 +/- 2.86%, 95.06 +/- 6.32%, p= 0.90, Mann- Whitney U test) expression, but significantly fewer diabetic ADSCs expressed CD105 or endoglin, a marker for angiogenesis (89.91 +/- 7.14%, 57.90 +/- 21.36% for non-diabetic and diabetic groups, p< 0.001, Mann-Whitney U test). Diabetic ADSCs tended to exhibit slower proliferation (4.43 +/- 2.70 days, 3.04 +/- 0.55 days, p= 0.27 in passage 2 (P2); 3.95 +/- 1.55 days, 2.96 +/- 0.91 days, p= 0.21 in P3, independent t-test) and lower viability than those of non-diabetic ADSCs (77.65 +/- 10.61%, 87.13 +/- 10.06%, p= 0.25 in P2; 82.70 +/- 8.07%, 91.15 +/- 3.77%, p= 0.04 in P3, independent t-test). Culture in low-glucose anti-oxidant-serum supplemented medium did not improve CD105 expression (65.14 +/- 5.86%, 71.06 +/- 10.27%, 64.05 +/- 10.04%, p= 0.70, for P1, P2, and P3, respectively, repeated measure ANOVA) and cell proliferation (p= 0.50 for P2 vs. P3, paired t-test) of diabetic ADSCs. Conclusions: Overall, diabetes reduced CD105 expression and ADSCs proliferation, suggesting that the angiogenic potency of diabetic ADSCs is reduced. The diabetic ADSCs in this study were also more prone to cell death caused by handling technique compared to non-diabetic ADSCs. Therefore, more advanced culture techniques should be applied to expand ADSCs from diabetic patients to achieve expected clinical outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.