Experiments were conducted to investigate enhanced biodegradation of carbamothioates and to evaluate the effect of microbial inhibitors on the efficacy of butylate [S-ethyl bis(2-methylpropyl)carbamothioate], EPTC (S-ethyl dipropylcarbamothioate), and vernolate (S-propyl dipropylcarbamothioate) in soils that had received butylate treatment in previous years (butylate-history soils). Inhibitors used were fonofos (O-ethyl-S-phenylether phosphonodithioate) and R-33865 (O,O-diethyl-O-phenylphosphorothioate). R-33865 and fonofos significantly improved control of large crabgrass [Digitaria sanguinalis(L.) Scop. # DIGSA] with butylate and EPTC in corn (Zea maysL. ‘Coker 21’). Bioassay data reflected more residual phytotoxicity from butylate and EPTC when these herbicides were combined with the microbial inhibitors. In butylate-history soils planted to soybeans [Glycine max(L.) Merr. ‘Wright’], R-33865 did not improve the efficacy of vernolate. These results indicated some cross-adaptation of the butylate-adapted microorganisms for EPTC, but no cross-adaptation was detected for vernolate. Under laboratory conditions,14C-butylate was degraded more rapidly to14CO2in butylate-history soils than in non-butylate-history soils.
Laboratory experiments were conducted to evaluate the biodegradation of14C-labeled butylate, cycloate, EPTC, pebulate, and vernolate in three butylate-history soils that had received three to eight applications of butylate under field conditions. After 20 days, biodegradation of butylate and EPTC was accelerated and had no lag phase in all three butylate-history soils. Butylate-adapted microorganisms were cross-adapted for EPTC and degraded EPTC as readily as butylate. Biodegradation of butylate and EPTC in Dothan soil without a butylate history exhibited a lag phase of 6 days after which14CO2was evolved at an exponential rate. This indicated that enhanced biodegradation was induced after one application of butylate or EPTC. Butylate-adapted microorganisms were cross-adapted for vernolate and pebulate in Dothan and pebulate in Wagram soils with a butylate history. Biodegradation of vernolate and pebulate was not enhanced in Varina butylate-history soil. After 20 days, there was no cross-adaptation for cycloate in any soil. These findings indicated that biodegradation of carbamothioates was influenced by soil type and previous carbamothioate use and that caution should be exercised in use of EPTC on fields of previous butylate use.
Crops grown on the Paleudult soils of the South Atlantic Coastal Plain often benefit from disruption of root-restrictive subsoil layers. In this physiographic area, the response of sunflower (Helianthus annum L) to subsoiling was unknown. We hypothesized that in-row subsoiling would benefit sunflower performance, and that plant performance could be related to profile penetration-resistance patterns. Sunflower was grown on Norfolk loamy sand in Florence, SC, and on Orangeburg loamy sand (both fine-loamy, siliceous, thermic
The influence of previous herbicide applications on the degradation rate of butylate [S-ethyl bis (2-methylpropyl)carbamothioate], EPTC (S-ethyl dipropyl carbamothioate), alachlor [2-chloro-N-(2,6-diethyl-phenyl)-N-(methoxymethyl)acetamide], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] was measured. Degradation studies were conducted on soils with zero to eight previous applications of butylate, zero and six consecutive annual applications of alachlor, and zero to seven previous applications of metolachlor. Previous applications of alachlor or of metolachlor did not affect the rate of degradation when the same herbicide was reapplied. Soils with previous butylate-use history had more rapid degradation of butylate or EPTC than soils with no previous butylate applications. Because soil sterilization reduced14CO2evolution to a low level, soil microorganisms could be the primary mechanism of butylate degradation. There was no difference between butylate or EPTC degradation rate in soils treated previously with butylate. Butylate could not be detected 28 days after treatment in soils previously treated with butylate, whereas soils not previously treated with butylate still contained biologically active butylate. Dietholate (O,O-diethylO-phenyl phosphorothioate) added to butylate generally reduced the rate of butylate degradation in soils previously treated with butylate, but the butylate concentration always was lower in soils treated previously with butylate than in soils without previous butylate applications. Weed control in the field showed rapid loss of butylate and EPTC in soils with previous butylate treatment and that dietholate reduced the rate of butylate and EPTC degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.