In calcific aortic valve disease (CAVD), microcalcifications originating from nanoscale calcifying vesicles disrupt the aortic valve (AV) leaflets, which consist of three (biomechanically) distinct layers: the fibrosa, spongiosa, and ventricularis. CAVD has no pharmacotherapy and lacks in vitro models as a result of complex valvular biomechanical features surrounding resident mechanosensitive valvular interstitial cells (VICs). We measured layer-specific mechanical properties of the human AV and engineered a three-dimensional (3D)-bioprinted CAVD model that recapitulates leaflet layer biomechanics for the first time. Human AV leaflet layers were separated by microdissection, and nanoindentation determined layer-specific Young’s moduli. Methacrylated gelatin (GelMA)/methacrylated hyaluronic acid (HAMA) hydrogels were tuned to duplicate layer-specific mechanical characteristics, followed by 3D-printing with encapsulated human VICs. Hydrogels were exposed to osteogenic media (OM) to induce microcalcification, and VIC pathogenesis was assessed by near infrared or immunofluorescence microscopy. Median Young’s moduli of the AV layers were 37.1, 15.4, and 26.9 kPa (fibrosa/spongiosa/ventricularis, respectively). The fibrosa and spongiosa Young’s moduli matched the 3D 5% GelMa/1% HAMA UV-crosslinked hydrogels. OM stimulation of VIC-laden bioprinted hydrogels induced microcalcification without apoptosis. We report the first layer-specific measurements of human AV moduli and a novel 3D-bioprinted CAVD model that potentiates microcalcification by mimicking the native AV mechanical environment. This work sheds light on valvular mechanobiology and could facilitate high-throughput drug-screening in CAVD.
In the last 25 years, numerous tissue engineered heart valve (TEHV) strategies have been studied in large animal models. To evaluate, qualify and summarize all available publications, we conducted a systematic review and meta-analysis. We identified 80 reports that studied TEHVs of synthetic or natural scaffolds in pulmonary position (n = 693 animals). We identified substantial heterogeneity in study designs, methods and outcomes. Most importantly, the quality assessment showed poor reporting in randomization and blinding strategies. Meta-analysis showed no differences in mortality and rate of valve regurgitation between different scaffolds or strategies. However, it revealed a higher transvalvular pressure gradient in synthetic scaffolds (11.6 mmHg; 95% CI, [7.31–15.89]) compared to natural scaffolds (4,67 mmHg; 95% CI, [3,94–5.39]; p = 0.003). These results should be interpreted with caution due to lack of a standardized control group, substantial study heterogeneity, and relatively low number of comparable studies in subgroup analyses. Based on this review, the most adequate scaffold model is still undefined. This review endorses that, to move the TEHV field forward and enable reliable comparisons, it is essential to define standardized methods and ways of reporting. This would greatly enhance the value of individual large animal studies.
Background Skin biopsies are often used in daily practice for the diagnosis of acute (aGvHD) or chronic graft versus host disease (cGvHD). With the latest understanding in pathogenesis and new National Institute of Health (NIH) classifications for aGvHD and cGvHD, there is a need to evaluate the current prognostic value of histological grading cutaneous GvHD and its correlation to the clinical grade. Methods In a retrospective study with 120 skin biopsies (all taken for suspected GvHD) from 110 patients (all classified according to the NIH), biopsies were revised and graded, blinded for clinical information, for either acute of chronic features. Morphological grades were compared for concordance with the clinical grade and survival analyses were done for clinical and histological grading. Results Correlation for histologic vs. clinical grading was (very) poor for aGvHD and cGvHD (weighted κ − 0.038 and 0.0009, respectively). Patients with clinical aGvHD had worse prognosis compared to cGvHD. However, at time of biopsy neither clinical nor histological grading predicted the eventual survival for either aGvHD ( p = 0.9739 and p = 0.0744, respectively) or cGvHD ( p = 0.2149 and p = 0.4465, respectively). Conclusions Confirming the diagnosis of GvHD is still a valuable reason for taking a skin biopsy, but this study shows that histologic grading of GvHD in the skin biopsy has no additional value for clinicians in current practice. Electronic supplementary material The online version of this article (10.1186/s40001-019-0377-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.