Bivalve molluscs are descendants of an early-Cambrian lineage superbly adapted to benthic filter feeding. Adaptations in form and behavior are well recognized, but the underlying molecular mechanisms are largely unknown. Here, we investigate the genome, various transcriptomes, and proteomes of the scallop Chlamys farreri, a semi-sessile bivalve with well-developed adductor muscle, sophisticated eyes, and remarkable neurotoxin resistance. The scallop’s large striated muscle is energy-dynamic but not fully differentiated from smooth muscle. Its eyes are supported by highly diverse, intronless opsins expanded by retroposition for broadened spectral sensitivity. Rapid byssal secretion is enabled by a specialized foot and multiple proteins including expanded tyrosinases. The scallop uses hepatopancreas to accumulate neurotoxins and kidney to transform to high-toxicity forms through expanded sulfotransferases, probably as deterrence against predation, while it achieves neurotoxin resistance through point mutations in sodium channels. These findings suggest that expansion and mutation of those genes may have profound effects on scallop’s phenotype and adaptation.
Adherent cell culture typically requires cell spreading at the surface of solid substrates to sustain the formation of stable focal adhesions and assembly of a contractile cytoskeleton. However, a few reports have demonstrated that cell culture is possible on liquid substrates such as silicone and fluorinated oils, even displaying very low viscosities (0.77 cSt). Such behavior is surprising as low viscosity liquids are thought to relax much too fast (
The culture of adherent cells is overwhelmingly relying on the use of solid substrates to support cell adhesion. Indeed, it is typically thought that relatively strong bulk mechanical properties (bulk moduli in the range of kPa to GPa) are essential to promote cell adhesion and, in turn, regulate cell expansion and fate decision. In this report, we show that adherent stem cells such as mesenchymal stem cells and primary keratinocytes can be cultured at the surface of liquid substrates and that this phenomenon is mediated by the assembly of polymer nanosheets at the liquid-liquid interface. We use interfacial rheology to quantify this assembly and demonstrate the strong mechanical properties of such nanosheets. Importantly, we show that cell adhesion to such quasi-2D materials is mediated by the classical integrin/acto-myosin machinery, despite the absence of bulk mechanical properties of the underlying liquid substrate. Finally, we show that stem cell proliferation and fate decision are also regulated by the mechanical properties of these self-assembled protein nanosheets. Liquid substrates offer attractive features for the culture of adherent cells and stem cells, and the development of novel stem cell technologies, such as liquid-liquid systems, are particularly well-adapted to automated parallel processing and scale up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.