Summary In response to gravitational stresses, angiosperm trees form tension wood in the upper sides of branches and leaning stems in which cellulose content is higher, microfibrils are typically aligned closely with the fibre axis and the fibres often have a thick inner gelatinous cell wall layer (G‐layer). Gene expression was studied in Eucalyptus nitens branches oriented at 45° using microarrays containing 4900 xylem cDNAs, and wood fibre characteristics revealed by X‐ray diffraction, chemical and histochemical methods. Xylem fibres in tension wood (upper branch) had a low microfibril angle, contained few fibres with G‐layers and had higher cellulose and decreased Klason lignin compared with lower branch wood. Expression of two closely related fasciclin‐like arabinogalactan proteins and a β‐tubulin was inversely correlated with microfibril angle in upper and lower xylem from branches. Structural and chemical modifications throughout the secondary cell walls of fibres sufficient to resist tension forces in branches can occur in the absence of G‐layer enriched fibres and some important genes involved in responses to gravitational stress in eucalypt xylem are identified.
SummaryCellulose microfibrils are the major structural component of plant secondary cell walls. Their arrangement in plant primary cell walls, and its consequent influence on cell expansion and cellular morphology, is directed by cortical microtubules; cylindrical protein filaments composed of heterodimers of a-and b-tubulin. In secondary cell walls of woody plant stems the orientation of cellulose microfibrils influences the strength and flexibility of wood, providing the physical support that has been instrumental in vascular plant colonization of the troposphere. Here we show that a Eucalyptus grandis b-tubulin gene (EgrTUB1) is involved in determining the orientation of cellulose microfibrils in plant secondary fibre cell walls. This finding is based on RNA expression studies in mature trees, where we identified and isolated EgrTUB1 as a candidate for association with woodfibre formation, and on the analysis of somatically derived transgenic wood sectors in Eucalyptus. We show that cellulose microfibril angle (MFA) is correlated with EgrTUB1 expression, and that MFA was significantly altered as a consequence of stable transformation with EgrTUB1. Our findings present an important step towards the production of fibres with altered tensile strength, stiffness and elastic properties, and shed light on one of the molecular mechanisms that has enabled trees to dominate terrestrial ecosystems.
-A major focus of our research has been on using molecular technologies to guide breeding for high value wood and fibre traits in eucalypts. One approach has been to use genomic maps to locate and characterise QTL that control wood and fibre traits. A generic map for eucalypts has been developed that consists of codominant markers that can be assayed across the major commercial species. Also on the map are candidate genes for traits such as flowering and wood and fibre traits. QTL have been characterised for wood density, fibre length, pulp yield and microfibril angle. A number of these have been validated in a related pedigree. A subset of QTL colocates with candidate genes. Research is now focussed on DNA sequence variation in different parts of these candidate genes and determining if this variation is associated with variation in wood properties. Of particular interest are genes involved in fibre development and cell wall formation. A third approach is to profile the expression of genes in the tissue of interest and determine if this relates to variation in trait performance. Microarrays are being used to relate expression of several thousand genes in xylem tissue to variation in traits such as microfibril angle and density. eucalypt / linkage maps / QTL / candidate genes / xylem / microarrays Résumé -Génomique des critères de qualité du bois d'eucalyptus. Notre recherche a été concentrée sur l'utilisation de technologies molécu-laires pour guider l'amélioration génétique de critères importants de la qualité du bois et des fibres. On a développé une carte générique pour les eucalyptus à partir de marqueurs co-dominants intéressant les principales espèces d'intérêt commercial. Figurent également sur cette carte des gènes candidats concernant des caractères tels que la floraison et la qualité du bois et des fibres. On a mis en évidence des QTL pour la densité du bois, la longueur des fibres, le rendement en pâte et l'angle des microfibrilles. Un certain nombre ont été validés sur des familles apparentées à généalogie connue. Un sous ensemble de QTL sont co-localisés avec des gènes candidats. On concentre maintenant les recherches sur la variabilité de séquences ADN de ces gènes candidats pour savoir si elle est associée à celle des critères de qualité du bois. Sont d'un intérêt particulier les gènes impliqués dans le développement des fibres et la formation des parois cellulaires. Une troisième approche consiste à profiler l'expression des gènes dans les tissus en cause et à rechercher s'il existe d'éventuelles relations avec la variabilité des caractères. On utilise des microré-seaux pour relier l'expression de plusieurs milliers de gènes du xylème avec la variabilité de caractères tels que l'angle des microfibrilles et la densité du bois. eucalyptus / carte de liaison / QTL / gènes candidats / xylème / microréseaux
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.