The thermal conductivities of individual single crystalline intrinsic Si nanowires with diameters of 22, 37, 56, and 115 nm were measured using a microfabricated suspended device over a temperature range of 20–320 K. Although the nanowires had well-defined crystalline order, the thermal conductivity observed was more than two orders of magnitude lower than the bulk value. The strong diameter dependence of thermal conductivity in nanowires was ascribed to the increased phonon-boundary scattering and possible phonon spectrum modification.
We have observed experimentally that the thermal conductance of a 2.76-microm-long individual suspended single-wall carbon nanotube (SWCNT) was very close to the calculated ballistic thermal conductance of a 1-nm-diameter SWCNT without showing signatures of phonon-phonon Umklapp scattering for temperatures between 110 and 300 K. Although the observed thermopower of the SWCNT can be attributed to a linear diffusion contribution and a constant phonon drag effect, there could be an additional contact effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.