This study analyzes the instantaneous spatial energy density and Poynting vector in the WPT system and presents time-varying distributions and animations of this energy density and Poynting vector. First, the energy density is decoupled by two self-energy densities of each coil and the mutual energy density of the two coils. Result reveals how the energy is stored in the WPT system. Second, the Poynting vector is analyzed, and it is found that the power is transferred only in the last half period of the Poynting vector, not at every moment of the whole period. This instantaneous Poynting vector also possesses a characteristic that shows no power flow on the condition that the current phase difference equals zero. This finding is different from the energy density and indicates that the instantaneous Poynting vector can perfectly interpret how power is transferred in the WPT system. Finally, a simulation and an experiment were conducted to verify the correctness of the analysis. This study contributes to a deeper and better understanding of the intrinsic characteristics of energy storage and power flow in the WPT system, and can be referred to for WPT system design and optimization when one considers the EMC or human electromagnetic field exposure problem.
This study analyzes the magnetic field wave characteristics of a wireless power transfer (WPT) system from a time-varying view in the nonradiative near field. Phenomena of both forward and backward traveling waves were found. These wave phenomena refer to magnetoinductive waves (MIWs) according to the findings in this study and MIW theory and characteristics. A traditional MIW only appears in the MIW waveguide, which is always constructed by many parallel coils. However, this study analyzed MIWs in a two-coil WPT system, proving that MIWs exist not only in a multi-coil system but also in a basic two-coil system. The velocity of MIWs, a kind of a phase velocity, was calculated. An approximate equation for evaluating wave velocity is proposed. Furthermore, the MIWs in the two-coil WPT system were extended into a more general situation. In this general situation, two separated standing waves were set, and a traveling wave was generated by those two standing waves. The result explains the mechanisms of MIWs in a general situation from a time-varying view. Lastly, a simulation was conducted to verify the accuracy of the study. The results demonstrated that MIWs exist, and the approximate equation is correct. This study presents a novel view on the mechanisms of the WPT system from a wave view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.