This paper presents the proposal of A new methodology for the identification of residential equipment in non-intrusive load monitoring systems that is based on a Convolutional Neural Network to classify equipment. The transient power signal data obtained at the time an equipment is connected in a residence is used as inputs to the system. The methodology was developed using data from a public database (REED) that presents data collected at a low frequency (1 Hz). The results obtained in the test database indicate that the proposed system is able to carry out the identification task, and presented satisfactory results when compared with the results already presented in the literature for the problem in question.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.