A urea injection control strategy for urea-selective catalytic reduction under a transient process is investigated on a heavy-duty diesel engine test bench in this study. The aim is to improve NO x conversion efficiency and reduce ammonia slip. With the selective catalytic reduction system as the research object, an open thermodynamic conservation system is established. The conservation relationship in the process of urea injection, NO x reduction reaction, ammonia storage, and ammonia slip is investigated. The ideal target ammonia storage area and the ammonia storage characteristics during the transient process are studied. The ammonia storage area and boundary, which change with the transient temperature, are established. Correction of real-time ammonia injection is further deduced from the boundary of the area. The world harmonized transient cycle test cycle result showed that compared to feed-forward control, the NO x conversion efficiency increased by 16% and the NH3 slip decreased by 75% when using the proposed real-time ammonia storage-management control method.
The overall performance and emission during a speed/torque versus time transient cycle are investigated in a heavy-duty truck engine equipped with an intake valve closing timing mechanism and a two-stage turbocharger system (high-pressure turbine is variable geometry turbine). The performance discrepancy analysis between steady-state and transient operation is completed based on a fairly optimized steady-state baseline. The result shows that during the transient operation, the transient NOx emission can track the steady-state baselines much better than particle matter, and the cumulative NOx in transients is even lower than the cumulative NOx of the steady-state baselines, while the rising particle matter emissions mainly due to appearance in particle matter emission spikes during the cycle. And the transient particle matter spikes appeared almost in two typical transient conditions: sharp acceleration from idling and abrupt load transients. The instantaneous equivalence ratio (F) is found to be the main physical factor governing particle matter spikes formation in transients. Particle matter spikes become prominent when F cannot track the steady-state baseline well or F rises over a critical value of 0.8. The control strategy of intake valve closing timing mechanism-variable geometry turbine-exhaust gas recirculation to bridge the gap of F between the steady-state and the transients has been established, which effectively cut down the emission spikes, reducing particle matter emissions by 32.9% with almost no change in NOx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.