Magnetoactive elastomers (MAEs), one kind of typical novel magnetoactive driver applied in the soft robotic area, have become one of the research hotspots as they can provide biologically friendly driving methods with safe, preprogrammed, and easy-to-implement properties. In this study, novel MAEs embedding soft magnetic iron microparticles with radial chains, which can be molded in one piece, achieve 3D deformation, and co-work between multiple MAEs under single homogeneous stimuli, are proposed. Then, two kinds of novel magnetoactive drivers are established based on the proposed MAEs, which can achieve the synchronous pumping behavior of heart and the extension behavior of muscle under applied homogeneous magnetic fields. The experimental data show that (1) for the pumping behavior, the maximum instantaneous flow rate and total pumping volume can reach 200.1 and 52.3 mL/min, respectively, under 120 BPM applied harmonic magnetic field with 0−300 mT amplitude; (2) the muscle extension behavior can achieve a strain of 0.925 without a loading mass and carry a load of 40 times its own weight with a pronounced dynamic movement. It should be emphasized that the behavior of the proposed magnetoactive drivers can be excited by remote homogeneous magnetic fields, and it has great application potential in biomimetic or bioinspired soft driving systems.
Functional soft materials, exhibiting multiple types of deformation, have shown their potential/abilities to achieve complicated biomimetic behaviors (soft robots). Inspired by the locomotion of earthworm, which is conducted through the contraction and stretching between body segments, this study proposes a type of one-piece-mold folded diaphragm, consisting of the structure of body segments with radial magnetization property, to achieve large 3D and bi-directional deformation with inside-volume change capability subjected to the low homogeneous magnetically driving field (40 mT). Moreover, the appearance based on the proposed magnetic-driven folded diaphragm is able to be easily customized to desired ones and then implanted into different untethered soft robotic systems as soft drivers. To verify the above points, we design the diaphragm pump providing unique properties of lightweight, powerful output and rapid response, and the soft robot including the bio-earthworm crawling robot and swimming robot inspired by squid to exhibit the flexible and rapid locomotion excited by single homogeneous magnetic fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.