Abstract-Traditional analysis and design of induction machines have been largely based upon lumped-parameter models. An alternative tool used for field-based evaluations of an induction machine is the finite-element method. Although useful, its computational complexity limits its use as a design tool. In this paper, a field reconstruction (FR) method for induction machine simulation is introduced. The FR method utilizes a small number of finite-element evaluations to establish basis functions of normal and tangential flux densities. The basis functions are then used to estimate the magnetic field under arbitrary stator excitation. Using such a tool, evaluation of fields and forces produced by a machine under alternative excitation strategies can be explored efficiently. Moreover, alternative field-based derivation of stator/rotor excitation control can be explored.Index Terms-Field reconstruction (FR), finite element (FE), induction machine, Maxwell stress tensor, torque and radial force.
Abstract-Traditional analysis and design of induction machines have been largely based upon lumped-parameter models. An alternative tool used for field-based evaluations of an induction machine is the finite-element method. Although useful, its computational complexity limits its use as a design tool. In this paper, a field reconstruction (FR) method for induction machine simulation is introduced. The FR method utilizes a small number of finite-element evaluations to establish basis functions of normal and tangential flux densities. The basis functions are then used to estimate the magnetic field under arbitrary stator excitation. Using such a tool, evaluation of fields and forces produced by a machine under alternative excitation strategies can be explored efficiently. Moreover, alternative field-based derivation of stator/rotor excitation control can be explored.Index Terms-Field reconstruction (FR), finite element (FE), induction machine, Maxwell stress tensor, torque and radial force.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.