Plant phenotypic image recognition (PPIR) is an important branch of smart agriculture. In recent years, deep learning has achieved significant breakthroughs in image recognition. Consequently, PPIR technology that is based on deep learning is becoming increasingly popular. First, this paper introduces the development and application of PPIR technology, followed by its classification and analysis. Second, it presents the theory of four types of deep learning methods and their applications in PPIR. These methods include the convolutional neural network, deep belief network, recurrent neural network, and stacked autoencoder, and they are applied to identify plant species, diagnose plant diseases, etc. Finally, the difficulties and challenges of deep learning in PPIR are discussed.
In this paper, an image enhancement algorithm is presented for identification of corrosion areas and dealing with low contrast present in shadow areas of an image. This algorithm uses histogram equalization processing under the hue-saturation-intensity model. First of all, an etched image is transformed from red-green-blue color space to hue-saturation-intensity color space, and only the luminance component is enhanced. Then, part of the enhanced image is combined with the original tone component, followed by saturation and conversion to red-green-blue color space to obtain the enhanced corrosion image. Experimental results show that the proposed method significantly improves overall brightness, increases contrast details in shadow areas, and strengthens identification of corrosion areas in the image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.