The ability to realize human-motion imitation using robots is closely related to developments in the field of artificial intelligence. However, it is not easy to imitate human motions entirely owing to the physical differences between the human body and robots. In this paper, we propose a work chain-based inverse kinematics to enable a robot to imitate the human motion of upper limbs in real time. Two work chains are built on each arm to ensure that there is motion similarity, such as the end effector trajectory and the joint-angle configuration. In addition, a twophase filter is used to remove the interference and noise, together with a self-collision avoidance scheme to maintain the stability of the robot during the imitation. Experimental results verify the effectiveness of our solution on the humanoid robot Nao-H25 in terms of accuracy and real-time performance.
In this paper, we study the mechanical behaviour of silicon carbide at the nanoscale, with a focus on the effects of grain orientation and high-dose irradiation. Grain orientation effect was studied through nanoindentation with the aid of scanning electron microscopy (SEM) and EBSD (electron backscatter diffraction) analyses. Mechanical properties such as hardness, elastic modulus and fracture toughness were assessed for different grain orientations. Increased plasticity and fracture toughness were observed during indentations on crystallographic planes which favour dislocation movement. In addition, for SiC subjected to irradiation, increases in hardness and embrittlement were observed in nanoindentations at lower imposed loads, whereas a decrease in hardness and an increase in toughness were obtained in nanoindentations at higher loads. Transmission electron microscopy (TEM) analyses revealed that the mechanical response observed at a shallow indentation depth was due to Ga ion implantation, which hardened and embrittled the surface layer of the material. With an increased indentation depth, irradiationinduced amorphization led to a decrease in hardness and an increase in fracture toughness of the material.
This paper compared the mechanical behavior of 6H SiC under quasi-static and dynamic compression. Rectangle specimens with a dimension of 3 × 3 × 6 mm3 were used for quasi-static compression tests under three different loading rates (i.e., 10−5/s, 10−4/s, and 10−3/s). Stress–strain response showed purely brittle behavior of the material which was further confirmed by scanning electron microscopy (SEM)/transmission electron microscopy (TEM) examinations of fractured fragments. For dynamic compression, split Hopkinson pressure bar (SHPB) tests were carried out for cubic specimens with a dimension of 6 × 6 × 4 mm3. Stress–strain curves confirmed the occurrence of plastic deformation under dynamic compression, and dislocations were identified from TEM studies of fractured pieces. Furthermore, JH2 model was used to simulate SHPB tests, with parameters calibrated against the experimental results. The model was subsequently used to predict strength and plasticity-related damage under various dynamic loading conditions. This study concluded that, under high loading rate, silicon carbide (SiC) can deform plastically as evidenced by the development of nonlinear stress–strain response and also the evolution of dislocations. These findings can be explored to control the brittle behavior of SiC and benefit end users in relevant industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.